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Abstract. The radiation field is calculated in an optically finite or semi-infinite, two-
dimensional, plane-parallel, absorbing–emitting but nonscattering grey atmosphere subjected
to diffuse cosine varying incident boundary radiation. We again approximate the kernel of
the integral equation for the emissive power by a sum of exponents. After this approximation
the integral equation can be solved exactly. The solution can be written in generalizedx- and
y-functions (orh- andg-functions in the semi-infinite case) which were introduced for a one-
dimensional atmosphere. Since the radiation field in the case of diffuse incident radiation
can be described as a superposition of solutions for the collimated case, we can find the
accurate values for the source function and the radiative flux at arbitrary optical depths in
the atmosphere. As in the case of collimated incident radiation, this approximation allowed of
finding accurate numerical values for the source function and the radiative flux.

Key words: two-dimensional radiative transfer,X- and Y -functions, emissive power,
radiative flux.

1. INTRODUCTION

In previous papers [1,2] we studied the radiative transfer in two-dimensional,
optically semi-infinite and finite atmospheres subjected to collimated cosine
radiation. By applying the kernel approximation method to a simplified integral
equation for the source function (or the temperature distribution, or the emissive
power) it was possible to find the radiative field at any point in the atmosphere.
In this paper these results are generalized for an optically semi-infinite or finite
atmosphere, allowing for diffuse cosine varying radiation incident on one (or both)
of its boundaries. Breig and Crosbie who have found the external radiation field for
these atmospheres [3−5] have already stressed that the cosine boundary conditions
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are not physically realistic. At the same time they are useful since the solutions
for other, more realistic problems can be expressed in terms of the cosine solutions
(Fourier theorem!). Perhaps diffuse incident radiation can serve more realistically
to solve some problems, e.g. in astronomy and atmospheric physics.

2. EQUATION OF RADIATIVE TRANSFER

We are looking for the emissive power (or the temperature distribution, or the
source function) in a homogeneous nonscattering, plane-parallel, two-dimensional
grey atmosphere which is in local thermodynamic equilibrium. The radiation field
in such an atmosphere is described by the following equation [6]

cos θ
∂I(τy, τz, θ, φ, τ0)

∂τz
+ sin θ sinφ

∂I(τy, τz, θ, φ, τ0)
∂τy

= −I(τy, τz, θ, φ, τ0) + S(τy, τz, θ, φ, τ0), (1)

where I is the intensity;θ, the polar angle measured from the inward normal
to the atmosphere;φ, the azimuthal angle measured from theτx-axis; S, the
emissive power in the atmosphere (this defines also the temperature distribution
in the atmosphere and quite often this function is called the source function). The
optical depthτz is measured downward from the boundary of the atmosphere and
it forms together withτx andτy a right-hand rectangular co-ordinate system. In
the atmosphere the energy is transferred only by radiation, i.e. there is no heat
conduction or convection.

We apply the integrating factor techniques to Eq. (1) and as a result obtain the
formal solution for the intensities of downward and upward moving radiation in the
form

I+(τy, τz, µ)

= I0(τ+
y ) exp(−τz/µ) +

1
π

∫ τz

0
S(τ ′y, τ

′
z, τ0) exp(−(τz − τ ′z)/µ)dτ ′z/µ (2)

and

I−(τy, τz, µ) =
1
π

∫ τ0

τz

S(τ ′y, τ
′
z, τ0) exp(−(τ ′z − τz)/|µ|)dτ ′z/µ, (3)

where

τ+
y = τy − τz tan θ sinφ,

τ ′y = τy + (τ ′z − τz) tan θ sinφ,
(4)

andµ = cos θ, τ0 is the optical thickness of the atmosphere inz-direction andI+
0

is the intensity incident on the upper boundary of the atmosphere [6].
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This very complicated change of variables, done by Smith in [7], reduces
the corresponding two-dimensional integral equation to a one-dimensional integral
equation.

As we require the atmosphere to be in radiative equilibrium, we can write

S(τy, τz) =
∫

4π
Idω, (5)

whereω is the solid angle and dω =dµdφ. Substituting Eqs. (2) and (3) into
Eq. (5), we obtain the equation for the emissive power

S(τy, τz, τ0) =
∫

2π
I+
0 (τ+

y ) exp(−τz/µ)dω

+
1
π

∫ 2π

0

∫ 1

0

∫ τ0

0
S(τ ′y, τ

′
z, τ0) exp(−

∣∣τz − τ ′z
∣∣ /µ)dτ ′zdµ/µdφ.

(6)

In the following we need also thez-component of the radiative flux which can be
written in the form

qz(τy, τz, τ0) =
∫

4π
I(τy, τz, θ, φ, τ0)µdω, (7)

or, taking into account Eqs. (2) and (3),

qz(τy,τz, τ0) =
∫ 2π

0

∫ 1

0

[
I+(τ+

y , 0, µ, φ) exp(−τz/µ)

+
∫ τ0

0
S(τ ′y, τ

′
z, τ0)sign(τz − τ ′z) exp(−

∣∣τz − τ ′z
∣∣ /µ)dτ ′z/µ

]
µdµdφ. (8)

Now we assume that there is incident radiation only on the surfaceτz = 0 and that it
is cosine varying but diffuse, i.e. incident radiation does not depend on the direction
of incidence. In this case the boundary condition forτz = 0 and0 ≤ µ ≤ 1 is
expressed as

I+(τ+
y , 0, θ, φ) = I+

0

[
1 + ε cos(βτ+

y )
]
, (9)

and forτz = τ0 and−1 ≤ µ ≤ 0

I−(τ−y , τ0, θ, φ) = 0, (10)

where

τ−y = τy + (τ0 − τz) tan θ sinφ.
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In Eq. (9),I0 is a constant,ε is the amplitude of the cosine wave, andβ is the spatial
frequency of the strips of illumination. In other words, the top of the atmosphere is
illuminated stripwise by diffuse rays, while the strips are parallel to thex-axis and
their width is defined by the spatial frequencyβ. The wave pattern of illumination
repeats itself along theτy-axis while the spatial period isπ/β. To solve Eq. (6), we
derive a one-dimensional integral equation for the emissive power by applying the
concept of separation of variables [4] in the form

S(τy, τz, τ0) = S0 [Jβ=0(τz, τ0) + εJβ (τz, τ0) cos(βτy)] , (11)

where the dimensionless emissive powerJβ can be shown to satisfy the integral
equation

Jβ (τz, τ0) =
1
2
E2 (τz, β) +

1
2

∫ τ0

0
E1

(
τz − τ ′z, β

)
Jβ

(
τ ′z, τ0

)
dτ ′z, (12)

with the generalized exponential integrals of the first and second order defined by

E1 (τ, β) =
∫ p

0

exp (− |τ | /t)√
1− β2t2

dt
t

(13)

and

E2 (τ, β) =
∫ p

0

exp(− |τ | /t)
(1− β2t2)3/2

dt, (14)

while p =
(
1 + β2

)−1/2
.

We solve Eq. (12), both for the casesβ = 0 and β 6= 0, by using the
approximation of the Sobolev resolvent function [8], described in [9].

Using the dimensionless emissive power for the cosine varying collimated
boundary condition, we can easily find the respective emissive power for the cosine
varying diffuse boundary condition [3]. We start from the dimensionless emissive
power for the cosine varying collimated boundary condition. In this case the
dimensionless emissive power satisfies the following integral equation [3]

Jcol
β (τz, µ0, τ0) = exp (−τz/µ0) +

1
2

∫ τ0

0
E1

(
τz − τ ′z, β

)
Jcol

β

(
τ ′z, µ0, τ0

)
dτ ′z.

(15)
Next we multiply Eq. (15) by the function

ψ1(µ0, β) =
(
1− β2µ2

0

)−3/2
(16)

and integrate the result from0 to p∫ p

0
Jcol

β (τz, µ0, τ0)ψ1(µ0, β)dµ0

= E2(τ, β) +
1
2

∫ τ0

0
E1

(
τz − τ ′z, β

) ∫ p

0
Jcol

β

(
τ ′z, µ0, τ0

)
ψ1(µ0, β)dµ0dτ ′z.

(17)
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Comparing Eqs. (15) and (17) we see that the forcing function of Eq. (17) is a
superposition of the forcing function of Eq. (15). Next we take into account the
superposition principle – if we have two linear Fredholm integral equations with
equal kernels and the forcing function of the second equation is a superposition of
the forcing function of the first equation, then the solution of the second equation
is also the superposition of the solution of the first equation. Consequently,

Jβ (τz, τ0) =
1
2

∫ p

0
Jcol

β (τz, u, τ0)ψ1(u, β)du, (18)

or, in our notations,

Jβ(τ, τ0)

=
1
2

∫ p

0
ψ1(u, β) {Xβ(u, τ0)y(τ, u, τ0)− Yβ(u, τ0) [xβ(τ0 − τ, u, τ0)− 1]}du.

(19)

The functionsXβ(u, τ0), Yβ(u, τ0), y(τ, u, τ0), andxβ(τ, u, τ0) are defined1, and
their determination is described, in [2]. In the same manner we can find the radiative
flux. According to Breig and Crosbie [4], we can write

qz(τy, τz, τ0) = πI+
0 [Fβ=0(τz, τ0) + εFβ(τz, τ0) cos(βτy)], (20)

whereFβ is the dimensionless flux

Fβ(τz, τ0) = 2E3 (τz, β) + 2
∫ τ0

0
Jcol

β

(
τ ′z, τ0

)
sign(τz − τ ′z)E2

(
τz − τ ′z, β

)
dτ ′z
(21)

andE3 is the generalized exponential integral of order three, i.e.

E3 (τz, β) = τ

∫ ∞

1
E2 (τzt, β/t) dt. (22)

Using the results of Breig and Crosbie [3], we can write Eq. (21) in the form

Fβ(τz, τ0) = 2E3 (τz, β) + 2
∫ p

0
F col

β (τz, u, τ0)ψ1(β, u)du− 2B(τ, β), (23)

whereF col
β (τz, u, τ0) is given by Eq. (34) in [2] and

B(τ, β) =
∫ p

0
u exp (−τz/u)ψ1(β, u)du. (24)

1 Typographical errors have crept into Eqs. (18)–(21) in [2]. The summation starts from
k = 1 in these equations. In Eqs. (18) and (20) there must be a summand 1, in Eq. (19)
a summand exp(−τ/µ0), and in Eq. (21) a summandexp(−τ0/µ0), outside the
summation sign.
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The z-component of the diffuse flux at the boundaries is given by Breig and
Crosbie [3]

Fβ(0, τ0) = 1 + 2
∫ p

0
F col

β (0, u, τ0)ψ1(β, u)du−
2
β2

(√
1 + β2 − 1

)
, (25)

since [3] E3(0) = 1/2, and

Fβ(τ0, τ0) = 2E3 (τ0, β) + 2
∫ p

0
F col

β (τ0, u, τ0)ψ1(β, u)du− 2B(τ0, β). (26)

This completes the solution of the posed problem.

3. NUMERICAL RESULTS

In order to get numerical results we used the quadrature scheme
outlined in [1]: we divided the integration range into four subintervals
(0, 0.9p), (0.9p, 0.99p), (0.99p, 0.999p), and (0.999p, p) and in each subinterval
we used Gautschi’s rule [10] with the weight function given by Eq. (16). The order
of quadratureN = 84 gave at least five accurate significant figures for the source
function when summing in Eq. (19).

The calculation of the flux was much more complicated. The integral term in
Eq. (23) could be tackled in the same way as in Eq. (19). As already pointed out
by Breig and Crosbie in [3], finding numerical values for the functionsE3(τ, β) and
B(τ, β) “presents an added numerical difficulty”.

First of all, the definition for the functionE3 must be redefined in the form [11]

E3(τ, β) =
1
2
τ [V(τ, β)− E2(τ, β)] , (27)

where

V(τ, β) =
∫ ∞

1
exp(−τ(t2 + β2)1/2)dt. (28)

Next we change the variables in Eq. (14), Eq. (24), and Eq. (28) and obtain formulas
for E3 andB in the form

B(τ, β) =
√

1 + β2

∫ 1

0

x

[1 + β2(1 + x2)]3/2
exp

(
−τ

√
1 + β2/x

)
dx, (29)

E3(τ,β)

=
1
2
τ(1 + β2)2

∫ 1

0

1− x2

x2 [1 + β2(1− x2)]3/2
exp

(
−τ

√
1 + β2/x

)
dx.

(30)
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The accurate numerical values of theB-function in Eq. (29) for a broad region of
both τ andβ could easily be found by using either Gautschi’s scheme [10] or a
very powerful code DQAG by Piessens and de Doncker [12]. Trying to numerically
evaluate theE3-function, we ran into trouble since neither of these schemes could
ensure the needed accuracy(ε = 10−7). When looking for the best possible
quadrature formula for our problem, we came across the second Euler–Maclaurin
summation code DMIDPNT in [13]. This work-horse, as the authors called it, was
able to give very accurate results, at the expense of much longer computing time,
though. For checking purposes we used MAPLE in the SWP package [14].

Figure 1 shows the behaviour of the source functionS(τy, τz) for β = 1.0
in a semi-infinite atmosphere. When we compare this with the source function in
Fig. 2, whereβ = 10.0, we notice that in the case of a larger spatial frequencyβ
the asymptotic regime is reached at much smaller optical depths.

For atmospheres with finite optical thicknesses the impact of incident diffuse
cosine radiation with smaller spatial frequencies on the source function can be
observed even at the bottom of the atmosphere, while that of the larger spatial
frequencies dies off before reaching the bottom (Figs. 3 and 4).

What has been said about the behaviour of the source function is valid also in
the case of the flux (Figs. 5–8).

We compared the respective parameters of the radiation field in the cases
of diffuse incident radiation and collimated incident radiation. While for the
diffuse case the parameters were monotonic functions of the optical depthτz, this
behaviour was lost for the collimated case.

4. CONCLUSION

The use of the superposition principle in solving the integral equations for the
source function allows us to consider the source function in the case of diffuse
incident radiation as a superposition of solutions for collimated incident radiation.
This means that the method used for finding the radiation field in an atmosphere
subjected to collimated incident radiation can be used as a basic method to solve
for the radiation field in a broad range of incident radiation patterns.
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Fig. 1. The source functionS as a function of optical depthsτy andτz in an optically semi-
infinite atmosphere. The spatial frequencyβ = 1.0.

Fig. 2. Same as Fig. 1, only the spatial frequencyβ = 10.0.
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Fig. 3. Same as Fig. 1, only the optical thickness of the atmosphereτ0 = 1.0.

Fig. 4. Same as Fig. 1, only the spatial frequencyβ = 10.0 and the optical thickness of the
atmosphereτ0 = 1.0.
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Fig. 5. The radiative fluxqz as a function of optical depthsτy andτz in an optically semi-
infinite atmosphere. The spatial frequencyβ = 1.0.

Fig. 6. Same as Fig. 5, only the spatial frequencyβ = 10.0.
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Fig. 7. Same as Fig. 5, only the optical thickness of the atmosphereτ0 = 1.0.

Fig. 8. Same as Fig. 5, only the spatial frequencyβ = 10.0 and the optical thickness of the
atmosphereτ0 = 1.0.
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KIIRGUSVÄLI ATMOSFÄÄRIS, MILLELE LANGEB
KOOSINUSSEADUSE JÄRGI MUUTUV DIFUUSNE KIIRGUS

Tõnu VIIK ja Indrek VURM

Vaadeldi kiirguslevi optiliselt lõpliku ja optiliselt poollõpmatu paksusega kahe-
mõõtmelises tasaparalleelses mittehajutavas, kuid neelavas ja kiirgavas atmo-
sfääris, millele langeb koosinusseaduse järgi muutuv difuusne kiirgus. Samuti kui
eelmistes artiklites [1,2] oletatakse, et atmosfäär on hall ning ta on kiirguslikus ja
lokaalses termodünaamilises tasakaalus. Praegusel juhul saab kiirguslevi võrrandi
taandada integraalvõrrandiks, mille omakorda saab muutujate eraldamise teel
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taandada suhteliselt lihtsaks integraalvõrrandiks ühemõõtmelise keskkonna kohta,
kui oletame, et pealelangeva kiirguse omadusedx-telje suunas ei muutu. Difuusse
pealelangeva kiirguse puhul allikfunktsiooni jaoks leitud integraalvõrrandi vaba-
liige on kollimeeritud pealelangeva kiirguse puhul leitud analoogilise võrrandi
vabaliikmete superpositsioon. Järelikult on ka difuusse pealelangeva kiirguse puhul
integraalvõrrandi lahendiks vastavate kollimeeritud juhu lahendite superpositsioon.
Seega saab lahendi lihtsalt leida, arvutuslikke raskusi valmistasid vaid kiirgusvoo
avaldisse ilmuvad integraalid. Neid õnnestus leida vajaliku täpsusega (ε = 10−7)
Euleri–Maclaurini teise summeerimisvalemi abil. Kontrolliks kasutasime Scientific
WorkPlace’i integreeritud programmipaketti MAPLE. Artiklis oleme vaadelnud
kiirgusvälja kahe olulise parameetri – allikfunktsiooni ja kiirgusvoo – käitumist
lõpliku ja poollõpmatu optilise paksusega atmosfääris pealelangeva kiirguse trii-
pude erinevate laiuste puhul. Selgus, et poollõpmatus atmosfääris kitsamate
triipude (suuremateβ väärtuste) puhul jõudis allikfunktsioon asümptootsesse
režiimi palju väiksematel optilistel sügavustel kui laiemate triipude puhul. Lõpliku
optilise paksusega atmosfäärides ulatus laiemate triipude mõju atmosfääri alumise
pinnani välja, kuna kitsamate triipude puhul pealelangeva kiirguse mõju sumbus
kiiresti. Kõik eelöeldu kehtib ka kiirgusvoo kohta.

Nii allikfunktsioon kui kiirgusvoog difuusse pealelangeva kiirguse puhul on
optilise sügavuseτz suhtes monotoonsed funktsioonid, mida ei saa aga alati öelda
kollimeeritud pealelangeva kiirguse puhul.
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