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Abstract. The radiation field is calculated in an optically finite or semi-infinite, twc
dimensional, plane-parallel, absorbing—emitting but nonscattering grey atmosphere subj
to diffuse cosine varying incident boundary radiation. We again approximate the kerne
the integral equation for the emissive power by a sum of exponents. After this approxime
the integral equation can be solved exactly. The solution can be written in generalized
y-functions (orh- andg-functions in the semi-infinite case) which were introduced for a on
dimensional atmosphere. Since the radiation field in the case of diffuse incident radi
can be described as a superposition of solutions for the collimated case, we can fin
accurate values for the source function and the radiative flux at arbitrary optical deptt
the atmosphere. As in the case of collimated incident radiation, this approximation allowe
finding accurate numerical values for the source function and the radiative flux.

Key words: two-dimensional radiative transfeX- and Y'-functions, emissive power,
radiative flux.

1. INTRODUCTION

In previous papers'{?] we studied the radiative transfer in two-dimensiong
optically semi-infinite and finite atmospheres subjected to collimated cos
radiation. By applying the kernel approximation method to a simplified integ
equation for the source function (or the temperature distribution, or the emis
power) it was possible to find the radiative field at any point in the atmospht
In this paper these results are generalized for an optically semi-infinite or fi
atmosphere, allowing for diffuse cosine varying radiation incident on one (or b¢
of its boundaries. Breig and Crosbie who have found the external radiation fielc
these atmosphere$ ] have already stressed that the cosine boundary conditi

214


https://doi.org/10.3176/phys.math.2001.4.03

are not physically realistic. At the same time they are useful since the solut
for other, more realistic problems can be expressed in terms of the cosine solu
(Fourier theorem!). Perhaps diffuse incident radiation can serve more realistic
to solve some problems, e.g. in astronomy and atmospheric physics.

2. EQUATION OF RADIATIVE TRANSFER

We are looking for the emissive power (or the temperature distribution, or
source function) in a homogeneous nonscattering, plane-parallel, two-dimens
grey atmosphere which is in local thermodynamic equilibrium. The radiation fi
in such an atmosphere is described by the following equation [

aI<7—y7 7—2’7 97 ¢7 7—0) + Singsin¢6[(7—y7 7_27 97 ¢7 7_0)

cos ot oty

= *I(Ty’TZ’gﬂvaO) +S(Ty77—279’¢)7—0)7 (1)

where I is the intensity;d, the polar angle measured from the inward norm
to the atmosphereyp, the azimuthal angle measured from thegaxis; S, the
emissive power in the atmosphere (this defines also the temperature distrib
in the atmosphere and quite often this function is called the source function).
optical depthr, is measured downward from the boundary of the atmosphere
it forms together with 7, and, a right-hand rectangular co-ordinate system.
the atmosphere the energy is transferred only by radiation, i.e. there is no
conduction or convection.

We apply the integrating factor techniques to Eq. (1) and as a result obtair
formal solution for the intensities of downward and upward moving radiation in-
form

I+(Ty77'z>,u)
= Io(r}) exp(—ra/p) + L/ S(r!, ! 1) exp(— (7 — 1) /w)dr/n (2)

and
I~ (g, 72 1) /Aswz, Jexp(— (v — )/lu)dr /u, @)

where

+

T, = Ty — T, tan0sin ¢,

! ()

Ty = Ty + (7, — 7.) tan O sin ¢,

andy = cosd, 1 is the optical thickness of the atmosphereidirection and;
is the intensity incident on the upper boundary of the atmospHgre [
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This very complicated change of variables, done by Smith”]n feduces
the corresponding two-dimensional integral equation to a one-dimensional integ
equation.

As we require the atmosphere to be in radiative equilibrium, we can write

S(Ty,TZ):A Idw, (5)

wherew is the solid angle andud =dude¢. Substituting Eqs. (2) and (3) into
Eq. (5), we obtain the equation for the emissive power

S(1y, 72, 70) = /ISF(T;_)QXP(—TZ/M)dw
2

1 2 1 0
b [ [ st esn(= Ir. = 22| fudrtan/udo.
™ Jo 0 Jo

(6)
In the following we need also thecomponent of the radiative flux which can be
written in the form

qZ(TyaTzaTO) = / I(TyaTzaea d)aTO)dea (7)
4

or, taking into account Egs. (2) and (3),
27 1
wryrm) = [ 0w esp(or )

0
+/ S(T;,T;,To)sign(TZ —70)exp(— ‘Tz — 7';‘ J)drl /| pdude. (8)
0

Now we assume that there is incident radiation only on the surfaee0 and that it
is cosine varying but diffuse, i.e. incident radiation does not depend on the direct
of incidence. In this case the boundary condition for= 0 and0 < p < 1is
expressed as

IM(1,,0,0,¢) = Iy [1+ ecos(Br, )], €)

and forr, = pand—1 < ;4 <0
I~ (r,,70,0,9) =0, (10)

where

7, =Ty + (70 — 72) tan Osin ¢.
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In Eq. (9),]p is a constant is the amplitude of the cosine wave, ahd the spatial
frequency of the strips of illumination. In other words, the top of the atmospher
illuminated stripwise by diffuse rays, while the strips are parallel tatfaxis and
their width is defined by the spatial frequengyThe wave pattern of illumination
repeats itself along the,-axis while the spatial period is/ . To solve Eq. (6), we
derive a one-dimensional integral equation for the emissive power by applyinc
concept of separation of variabl€§ n the form

S(Tya Tz, TU) = SO [Jﬁ:0(7—27 TO) + Ejﬁ (7_27 TO) COS(ﬁTy)] ) (11)
where the dimensionless emissive powgrcan be shown to satisfy the integra
equation

1 1 [T
Jﬁ (7—277—0) = 552 (7—27/8) + 2/0 & (Tz - T;,,B) Jﬁ (Tz,:vTO) d’T;, (12)

with the generalized exponential integrals of the first and second order definec
Pexp (—|7|/t) dt

R (13)
e b = [ S ”
2 \T, - 0 (1—ﬁ2t2)3/2 )

whilep = (1+ 52) /2.

We solve Eg. (12), both for the casgs = 0 and 5 # 0, by using the
approximation of the Sobolev resolvent functidh fescribed in{].

Using the dimensionless emissive power for the cosine varying collime
boundary condition, we can easily find the respective emissive power for the cc
varying diffuse boundary conditiot], We start from the dimensionless emissiv
power for the cosine varying collimated boundary condition. In this case
dimensionless emissive power satisfies the following integral equéfion [

1 [
T3 (1ot o) = exp (<7 /o) 5 [ (r = 71,8) I (vt i ) 0.
0

(15)
Next we multiply Eq. (15) by the function
-3/2
(o, B) = (1 - B2u3) (16)
and integrate the result fromto p
P
[ e 70 B
1 0 / P col (1 /
= &(1,0) + 2/0 & (Tz - Tzaﬁ)/o Jﬁ (TzHU’OaTO) V1 (po, B)dpodr,.
17)
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Comparing Egs. (15) and (17) we see that the forcing function of Eq. (17) i
superposition of the forcing function of Eq. (15). Next we take into account"
superposition principle — if we have two linear Fredholm integral equations w
equal kernels and the forcing function of the second equation is a superpositic
the forcing function of the first equation, then the solution of the second equa
is also the superposition of the solution of the first equation. Consequently,

1P col
To () = 5 [ 5 () i ), 18)

or, in our notations,
Jﬁ(Ta 7-0)

1 p

= 5 / 7/)1(% 5) {Xﬁ(uv ’7'0):(/(7', Uu, 7_0) - Yﬁ(ua TO) [':Uﬂ(TO - T,U, 7-0) - 1]} du.
0
(19)

The functionsXs(u, 79), Y3(u, 70), y(7, u, 70), andx(r, u, 7o) are defined, and
their determination is described, #][In the same manner we can find the radiativ

flux. According to Breig and Crosbié]} we can write

Q2 (Ty, T2, 70) = 71 [Fp—0(72, T0) + €F5(75, 70) cos(BTy)], (20)

whereF} is the dimensionless flux

70
Fg(1z,10) = 2E3 (12, 8) + 2/ JEOI (T;, 7'0) sign(r, — 7.)& (TZ — T;,ﬂ) dr!
0

(21)
and¢&s is the generalized exponential integral of order three, i.e.

& (r ) =7 / & (r.t, /1) dt. (22)
1
Using the results of Breig and Crosbi,[we can write Eq. (21) in the form
P
F,@(TZaTO) :283 (727/6)+2/ FBCOI (TZaUaTO) w1(57u)du728(7—aﬁ)a (23)

0

WhereFﬂCOl (7., u,70) is given by Eq. (34) in]] and

B(r,8) = /Opuexp (—72/u) ¥1(8, u)du. (24)

1 Typographical errors have crept into Egs. (18)—(21) 2in [The summation starts from
k = 1inthese equations. In Egs. (18) and (20) there must be a summand 1, in Eq.
a summand exp(—7/up), and in Eg. (21) a summanexp(—7o/p0), outside the
summation sign.

218



The z-component of the diffuse flux at the boundaries is given by Breig &
Crosbie }]

F3(0,70) =1+ 2/ FL(0, u, 70) 11 (8, u)du — 5 (\/1 F 32— 1) . (25)
0
since ] £5(0) = 1/2, and

F(10,70) = 23 (70, 3) + 2/010 F§° (70,1, 70) 41 (8, u)du — 2B(r0, ). (26)

This completes the solution of the posed problem.

3. NUMERICAL RESULTS

In order to get numerical results we used the quadrature sche
outlined in [']: we divided the integration range into four subinterva
(0,0.9p), (0.9p,0.99p), (0.99p, 0.999p), and (0.999p, p) and in each subinterval
we used Gautschi’s rulé] with the weight function given by Eq. (16). The orde
of quadratureV = 84 gave at least five accurate significant figures for the sou
function when summing in Eq. (19).

The calculation of the flux was much more complicated. The integral tern
Eq. (23) could be tackled in the same way as in Eq. (19). As already pointed
by Breig and Crosbie ir’], finding numerical values for the functiods(r, 3) and
B(t, 3) “presents an added numerical difficulty”.

First of all, the definition for the functiofi; must be redefined in the form!]

£4(r,5) = 57 V(. 0) — &x(7,B)], @)
where
Vi) = [ exp(-r(i+ 5 (29)
1

Next we change the variables in Eq. (14), Eq. (24), and Eqg. (28) and obtain form
for &5 andB in the form

B0 =T [

)]3/2 exp (—’7’\/ 1+ 62/x> dz, (29)

1+B2 l+x
Es(T,0)
1 ! 1—a? —s
=57 52)2/0 221+ B2(1 — 22)]*/ P (_T Lt ﬂ2/x) dz

(30)
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The accurate numerical values of thefunction in Eq. (29) for a broad region of
both 7 and 3 could easily be found by using either Gautschi’'s schetipdr a
very powerful code DQAG by Piessens and de Donckdr [Trying to numerically
evaluate the&s-function, we ran into trouble since neither of these schemes ca
ensure the needed accuragy = 10~7). When looking for the best possible
quadrature formula for our problem, we came across the second Euler—-Macl:
summation code DMIDPNT in'f]. This work-horse, as the authors called it, we
able to give very accurate results, at the expense of much longer computing
though. For checking purposes we used MAPLE in the SWP packége [

Figure 1 shows the behaviour of the source functitn,, 7.) for 5 = 1.0
in a semi-infinite atmosphere. When we compare this with the source functio
Fig. 2, wheres = 10.0, we notice that in the case of a larger spatial frequemncy
the asymptotic regime is reached at much smaller optical depths.

For atmospheres with finite optical thicknesses the impact of incident diff
cosine radiation with smaller spatial frequencies on the source function cai
observed even at the bottom of the atmosphere, while that of the larger sg
frequencies dies off before reaching the bottom (Figs. 3 and 4).

What has been said about the behaviour of the source function is valid als
the case of the flux (Figs. 5-8).

We compared the respective parameters of the radiation field in the ¢
of diffuse incident radiation and collimated incident radiation. While for t
diffuse case the parameters were monotonic functions of the optical depths
behaviour was lost for the collimated case.

4. CONCLUSION

The use of the superposition principle in solving the integral equations for
source function allows us to consider the source function in the case of diff
incident radiation as a superposition of solutions for collimated incident radiati
This means that the method used for finding the radiation field in an atmosp
subjected to collimated incident radiation can be used as a basic method to
for the radiation field in a broad range of incident radiation patterns.
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Fig. 1. The source functiob’ as a function of optical depths, and, in an optically semi-
infinite atmosphere. The spatial frequenty 1.0.

Fig. 2. Same as Fig. 1, only the spatial frequerty- 10.0.
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Fig. 4. Same as Fig. 1, only the spatial frequerity= 10.0 and the optical thickness of the
atmospherey = 1.0.
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qz(Ty’Tz)

Fig. 5. The radiative fluxg, as a function of optical depths, andr, in an optically semi-
infinite atmosphere. The spatial frequenty= 1.0.

qz(TY’TZ)
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Fig. 6. Same as Fig. 5, only the spatial frequerty: 10.0.
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Fig. 8. Same as Fig. 5, only the spatial frequerity= 10.0 and the optical thickness of the
atmospherey = 1.0.
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KIIRGUSVALI ATMOSFAARIS, MILLELE LANGEB
KOOSINUSSEADUSE JARGI MUUTUV DIFUUSNE KIIRGUS

Tonu VIIK ja Indrek VURM

Vaadeldi kiirguslevi optiliselt I6pliku ja optiliselt poolldpmatu paksusega katr

mddtmelises tasaparalleelses mittehajutavas, kuid neelavas ja kiirgavas ¢
sfaaris, millele langeb koosinusseaduse jargi muutuv difuusne kiirgus. Samut
eelmistes artiklites'[?] oletatakse, et atmosfaar on hall ning ta on kiirguslikus
lokaalses termodiinaamilises tasakaalus. Praegusel juhul saab kiirguslevi voi
taandada integraalvdrrandiks, mille omakorda saab muutujate eraldamise
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taandada suhteliselt lihtsaks integraalvdrrandiks ihemddtmelise keskkonna k
kui oletame, et pealelangeva kiirguse omadus¢elje suunas ei muutu. Difuusse
pealelangeva kiirguse puhul allikfunktsiooni jaoks leitud integraalvdrrandi va
liige on kollimeeritud pealelangeva kiirguse puhul leitud analoogilise vorral
vabaliikmete superpositsioon. Jarelikult on ka difuusse pealelangeva kiirguse
integraalvdrrandi lahendiks vastavate kollimeeritud juhu lahendite superpositsi
Seega saab lahendi lihtsalt leida, arvutuslikke raskusi valmistasid vaid kiirgus
avaldisse ilmuvad integraalid. Neid dnnestus leida vajaliku tapsusegal()~")
Euleri—-Maclaurini teise summeerimisvalemi abil. Kontrolliks kasutasime Scient
WorkPlace'i integreeritud programmipaketti MAPLE. Artiklis oleme vaadelnt
kiirgusvalja kahe olulise parameetri — allikfunktsiooni ja kiirgusvoo — kaitum
I6pliku ja poolldpmatu optilise paksusega atmosfaaris pealelangeva kiirguse
pude erinevate laiuste puhul. Selgus, et poollépmatus atmosfaaris kitsa
triipude (suuremate3 vaartuste) puhul j6udis allikfunktsioon asimptootses
reziimi palju vaiksematel optilistel sigavustel kui laiemate triipude puhul. L&pli
optilise paksusega atmosfaarides ulatus laiemate tripude maju atmosfaari alt
pinnani vélja, kuna kitsamate triipude puhul pealelangeva kiirguse méju sun
kiiresti. Kbik eeldeldu kehtib ka kiirgusvoo kohta.

Nii allikfunktsioon kui kiirgusvoog difuusse pealelangeva kiirguse puhul «
optilise siigavuse, suhtes monotoonsed funktsioonid, mida ei saa aga alati 6¢
kollimeeritud pealelangeva kiirguse puhul.
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