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Abstract. An analytic method for solving the one-dimensional Schrodinger equation is

applied to confining potentials with well-defined maxima. Exactly solvable substitute for

the original potential is constructed, which consists of several smoothly joined Morse-type
(ordinary, reversed, or pseudo-Morse) components. The analytic procedures of calculating the

complete spectrum of the bound and quasi-bound states as well as the corresponding stationary
wavefunctions are described, and an exact formula for the wavefunction’s phase shift is derived.

The efficacy of the approach is demonstrated on the rotationally highly excited excimersXe 3
in the electronic state 0.
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1. INTRODUCTION -

4’

Rigorous methods for solving the quantum-mechanical inverse problem, that

is, deducing the interaction potential from the experimental data, have been worked

out about 50 years ago, thanks to the remarkable efforts by Marchenko, Gel’fand,
Levitan and others (see ['] for a comprehensive review). In spite of this long-
stretching history one may even nowadays come upon a misconception, as if

a confining potential could be uniquely determined from its complete energy

spectrum. Erroneousness of this standpoint was first demonstrated by Bargmann
[23], who explicitly built up several different potentials having the same energy

spectrum and also the same energy dependence of the wavefunction’s phase
shift. Many years later Abraham and Moses [*] elaborated a simple procedure
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for constructing isospectral potentials and the relevant normalized wavefunctions.

According to their method the new potential is calculated as follows [];

U(z) =V(z) + 2(—;{; In[l+vl(z)],

where V'(z) denotes the original potential, +y is a constant, and the function

1) = [
„

dylpo(z)]?

is determined by the initial ground-state eigenfunction ¢g(z), which in turn

transforms to

vVli+7y
Wo(z) = wo(x)m-

Thus the new potential (1) and the “renormalized” ground-state wavefunction

(3) are both related to the parameter y, which generates a family of isospectral
potentials (and corresponding wavefunctions). In Fig. 1 the Abraham—Moses

method is demonstrated for the 0, state of the excimer Xe3, whose potential
parameters have been specified elsewhere [®]. Compared with the original one, the

new potential is of essentially different shape only in case of comparatively large
values of v, or alternatively, when y — —l. The latter is just the limit case when

the previous zeroth level is removed from the energy spectrum, while the other

levels remain in their positions. One can infer that it is not so easy to distinguish
the cases 7 = 0 and v = —1 when trying to determinethe potential on the basis of

the available experimental data.

The purpose of the above discussion was to point at a regrettable fact that our

knowledge of the actual interaction potential for almost any quantum system to

study is more or less incomplete. Although, as mentioned, the strict criteria for

the unique solution of the quantum-mechanical inverse problem have been stated

long ago; they are usually extremely difficult to fulfil. A rather thriving strategy in

this situation is to construct a potential that would take a possibly full account of

the available information (experimental and theoretical) about the quantum system,
being at the same time exactly solvable. Varying the parameters of such a probe
potential and performing the needful quantum-mechanical calculations, one can

gradually come closer to the real interaction potential for the system. Of course,

such an approach is only justified if one is looking for a reasonable potential
in comparatively limited distance and energy ranges, not in the whole physical
domain.

Aiming at this goal, the author recently proposed a simple method for

constructing exactly solvable substitute potentials with the help of several smoothly
joined Morse-type components [*]. As is known, any Morse-type potential induces

a Schrodinger equation that can be converted into a confluent hypergeometric
equation, which always (not only in the classical Morse case) has the analytic

3)

(1)

(2)
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solution. Still more recently the same idea has been applied to double-well

potentials [®]. In principle, the method can be extended to describe any one-

dimensional quantum system in a limited range. For example, it can be applied
to a diatomic molecule in an arbitrary rotational substate. This is demonstrated in

Fig. 2, where the initial exactly solvable rotationally unexcited potential (curve 1)
has already been partially shown in Fig. 1 (the curve with v = 0). The exactly
solvable substitutes for the effective potentials of the rotationally excited excimers

have been determined from the appropriate least squares’ fits and their parameters
are given in Table 1. One can see that with a relatively small number of components
a surprisingly good fit in a reasonably wide distance range can be found for the

potentials of rather different shape.

Fig. 1. The Abraham-Moses method [*] is applied to the excimer Xe; in the electronic

state 0. The horizontal lines indicate the vibrational levels of the system (the same for all

potentials). The value ¥ = 0 corresponds to the original potential. When v = —l, the

previous zeroth level is removed from the spectrum, while the positions of all other bound

states remain unchanged.
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Fully repulsive (curves 4 and 5 in Fig. 2) and nearly flat (curves 1 and 2) Morse-

based potentials have been studied in detail elsewhere [®7]. Here we only want to

point out that these earlier results can be applied to the effective potentials for the

rotationally excited diatomic molecules, since any of them can be approximated
by a reasonable exactly solvable substitute. From Table 1 one can see that curves

4 and 5 do not entirely consist of Morse-type components: a small part of them

is approximated by a straight line. This little complement is needed to ensure

the continuity of the potential and its first derivative. It does not affect the exact

solvability of the problem, since a linear potential induces an analytic solution in

terms of the well-known Airy functions [?].
In this paper we concentrate on the analysis of the potentials having a

pronounced hump (like curve 3 in Fig. 2). The most specific feature of this case

is a wide metastability range between the dissociation energy and the top of the

potential barrier, where instead of the usual vibrational levels one has to take

account of the quasi-bound states (resonances). In Section 2 we describe all details

of calculating the bound and quasi-bound vibrational levels, the corresponding
stationary wavefunctions, and the profiles of the resonances. The results of

Fig. 2. Effective potential energy curves for the excimer Xe; (0;) in different rotational

substates. The parameters of the exactly solvable component potentials (solid lines) are given
in Table 1.
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calculations are demonstrated and analysed in Section 3. Finally, a conclusion of

the work is presented in Section 4.

Table 1. The parameters of the smoothly joined components of the exactly solvable potentials
shown in Fig. 2. The subscripts K = —1 and £ = 0 are related to the pseudo-Morse,
k = 1 to the ordinary Morse, and k£ = 2 to the reversed Morse components, respectively. Xy

(k = 0,1, 2) denote the boundary points, and .J the rotational quantum number. For J = 750

and J = 1000, the component with k = 1 represents a straight line U; (R) = a 1 R + V 3

2. SOLUTION OF THE SCHRODINGER EQUATION

2.1. Model

According to the general idea of the approach [7], the model potential we are

going to study consists of three components, as shown in Fig. 3. They all have the

well-known analytic form of the Morse potential

J=0 X, =295A X, =5.080853 A
0 0.186119 4.83408 3.702782 26.9298

1 — 515.53 1.91 3.24 0

2 — -0.0920789 0.4154014 13.080853 551.23

J = 250 X;=2.926495A X,=3.880719 Ä
0 — 0.214814 5.194871 3.6258 288.9
1 — 419.3686 1.949744 3.273318 188.4303
2 — -6.808495 0.7705152 6.264231 579.8639

J = 500 X,=3.150787 A X,=3.836371A
0 0.08647475 3.296007 4.2814727 679.394525

1 151.7572 2215147 3.414983 > 125.5279

2 — -192.9908 0.6292893 4.431376 821.2128

J=750 Xo=3.14 A X, =368 A X, =4.08 A
-1 0.0685224 2.933997 . 4.541099 1581.9275

0 0.0279844 1.875 5.688487 1439.485

1 -206.4243 2248.817

2 =794.6609 0.562215 3.28 1410.872

J = 1000 Xo=324A X;=390A X, =422 A
-1 0.0391075 2.21653 5.301897 2666.993

0 0.0044775 0.75 11.49535 1959.7

1 -611.8529 4740.241

2 -8841.262 0.475161 -1.12 9656.522
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In the short distances’ region R < X; (k = 0) the potential is approximated by
a pseudo-Morse potential Uy(R), whose main peculiarity is that the parameters
Dy and ag are not independent, but Dy = h?a3/ (8m) with m being the reduced

mass of the particle. It means that the potential well is just of the limit depth when

there is no discrete spectrum any more [°]. If needed, one can introduce additional

pseudo-Morse components with subscripts k = —l, -2, -3, ...

The central part of the potential curve X; < R < X 5 (k = 1) is approximated
by an ordinary Morse potential, while the hump’s region R > X 5 (k = 2), which

we are most interested in, is described by a reversed Morse potential with the

parameter DDy being negative. The same system of notation — subscript £ = 0

(and k£ = —l,-2,-3,...) for the pseudo-Morse, k = 1 for the ordinary Morse,
and k = 2 for the reversed Morse components — will be used throughout this paper

(including Table 1 related to the potentials in Fig. 2).
The solution scheme of the Schrodinger equation is essentially the same

as described in Subsection 2.1 of Ref. [7]. The first step is to introduce

dimensionless variables for the three distance regions under examination:

Uk = Zak exp(—ak(R— Rk)) (k = 0, 1,2), where Ak = \/2ka/(fiak) (and

Fig. 3. The model potential analysed in this paper. Notation of the components corresponds to

formula (4). Note that, although invisible on the scale of the figure, the pseudo-Morse potential
still has a minimum at Ro.
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consequently, ag = %). The relevant Schrödinger eguations then become

P(yr) | 1 d¥(yx) [ % (ak 1
+ P G e v = —

dyž Uk dyk
+

yš Yk 4)] (yk) 0 (k 1,2, 3) ,

where the plus sign in square brackets corresponds to the indices k = 0 and

k = 1, and minus to k = 2. The quantities y} are defined as follows: u? =

(a2/Dy) - (Vi + Dr — E), k = 0,1,2. Note that Dy < 0 and pq is a pure

imaginary quantity for any stationary state, since always £ > V; + Dy.
The next traditional step is to convert (5) into the confluent hypergeometric

form, using a transformation ¥ ~ exp(—z/2)z°G(b, ¢; z),

d*G(b,c; z) dG(b,c; z) 1

I— +(2c+l —z)T + (b—c— ž) G(b,c;z)=o,

with the parameters b, ¢ and the dimensionless coordinate z, which for different

energy and distance regions are specified in Table 2 (5, = |ukl):

The fundamental solution of (6) can be always built up of the special solutions

G =9(-b+c+ %,20 + 1;7) and Go = exp(z) U(b+ c + š, 2¢ + 1; —z) [l9],
which for sufficiently large x can be evaluated from the asymptotic series

_aN a)p(a—c+ 1)yY(a,c;z) =z Z%_(_:})T—)—’
n=o

where (a), =l'(a+n)/T'(a) =ala+l)(a+2)...(a + n —1) is the Pochhammer

symbol. This simple formula may not converge for smaller z, directing one to a

more complicated but universal expansion

U(a,c;z) = %(-%d)(a, ¢ x)+ -I;(I,?—(—;—)l)—ml“CQ(a +l—c,2—c;7),

R<X, | x,<R<X, | x,<rR<x, | R2X, R>X,

ESV|+D1 E2V,+D, E<V,+D, E2V,+D,

b 1/2 ai " ay ia, ia,

c iy Hi iBy 1b ip
x Yo Y1 Y1 iy, iy,

Table 2. The quantities related to Eq. (6) in different regions

O)

(6)

(7)

(8



22) =
——

r (2+3) (13)
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where the symbols

az ala+l)z?r )=]+-2
2Blecalm !otL o

denote confluent hypergeometric functions. Equivalently, the general solution

of (6) can be directly constructed from Fi = ®(—b + ¢ + %,20 + 1;z) and

F=272®(-b—c+ 3, —2c + 1;2).

2.2. Solution in the small distances’ region

The general solution of the Schrédinger equation (5) is actually needed only
for the central part X; < R < X 5 of the potential, while in the regions R < Xi
and R > X, its form is essentially simplified. For example, as Go — oo when

x — 00, one immediately gets the solution with the correct asymptotic behaviour

(i.e., vanishing at z — 00) in the region R < X;:

V (iBo, 2ibo + 1;y0).Woy v exp(—yo/2)yy °Y(ido

Thereafter, using (8) and noting that yy = exp(—a(R — Ryp)), one comes to the

formula

Yo = NoCo(yo) cos [wpo + Do(yo) — aOLoRI,

where Ny is the normalization factor (i.e., a real constant),

Co(yo)eP®) = exp(—yo/2)®(iBo,2ißo+ 1;y0)

sl RO BNSSob+t G+DU\ "B+i

_&_o_/:4_)_4____ _fl/}_

according to [°], and

Yo = aofloßo — alg [P(2ZB())/P(Z,30)]

Formula (10) related to a pseudo-Morse potential has been derived in [®].
However, an important innovation here is the explicit expression for the phase shift,
which does not contain any additional terms (otherwise the wavefunction would not

be real!) and, as we now demonstrate, can be easily evaluated for any given energy.
Indeed, using the Legendre formula for doubling a gamma function’s argument[l]

(9)

(10)

(11)

(12)
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and the formula [!!]

1 1
arg’ (i7+ ž) = &[ž In(l+4y%) —ln2 -1]

1 f% 1 dt—ž/o (COtht —Z) C—t sm(2'yt)7

one can write

arg[P(2iBo)/T(i6o)] = ho [3Mn(l+4BB) ~n2 —l]
—š /00 (Cotht — %) g sin(Zflot)%,

0

which conclusively fixes the phase shift (12) for the wavefunction (10).
Another important quantity for finding the stationary states of the system, the

wavefunction’s dimensionless logarithmic derivative, then becomes [®]

1¥, w Coo(yo) sin [po + Doo(yo) — aoLoRI
Fo(E,R) =—-0 — Yo g Ctolto)Simi¥o+“oolto) —dPot]o(E, R)

agVy 2
po

Co(yo) cos[po + Do(yo) — aoLoRI

where the function Cyg(yp)e*Po®o) = exp(—lo/2)®(iBy + 1,2if0 + 1;10) can

be calculated with the help of (11), if one replaces yy — —g, in accordance with

the general relation [l°] .

exp(—yo/2)®(ifo + 1,2if0 + 1;y0) = exp(yo/2)®(iPo, 2ißo + 1; —yo).

2.3. Bound states’ region (E < V 5 4+ D3)

In the central region X; < R < X>, as already mentioned, one has to examine

the general solution of the Schrédinger equation (5), which is more conveniently
expressed in terms of the functions F; and F, defined in the last paragraph of

Subsection 2.1. The corresponding wavefunction then reads

v, = Nl(+)yi‘ls(al,ul;yl) + Nl(—)yf'“S(al, —-p1;v1); X 1 < R<X>,

where N1(+) and N1(_) are some real constants and the S-functions

S(a,u;z) = e 2P(—a+ p+%,2u+ 1; ),

according to ["], can be evaluated as follows:

(14)

(15)

;g(

(17)

(18)

(19)



U 1 = NllCi(yl)cos [pl + Di(yl) —aafpiß], X 1 < R< X, (24)
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o 0

S(a, p;z) =an (k=l,2)
n=o

az T T

ithBo = 1 =—— = — | —aß,- — Bn-with Bo »Bi 2H+l,Bn n(2u+n)( a nl+4B 2)
n=2173,.. ;

¥

;
Thecorresponding dimensionless logarithmic derivative then becomes

1 Y +1
F(E,R) = Ešw—i = gl-ž— -a

+ („1 -1)NytS =l, msyy) +y; " Sar=l,—pls 1)
2 NyS(ay, p1; ) + y,

"S(ar,—pl;1)

'yl),1,— 1,-11)—MS(aI

—HI3Y

_yl

#ls(al,

S Y 1)
1l,ul,'zl) +W

7

»H1lellns?;('flS(mNi
M

+)Aa=

N
Ni

The solution for the right-side region R > X, has been given elsewhere [7],
taking into consideration that the F>-term should be omitted, since F> — 00, when

R — oo (y; —0). Consequently,

\l]; — N [st .292 (za2,1»12;iy2), R> X
Z

2

with the normalization factor N, and the relevant S-function given by (20). The

corresponding dimensionless logarithmic derivative reads

1 V
P(E,R) = ——

_
_S(iag, p 2 + I;iya)y3

A aj
—ja —

B

B(u2 + 1)S(ia2,2;iy2) (u 2 + 3)? 2p2 + 17

2.4. Eigenstates in the quasi-bound (V> + D 2 < E < V5) and free particles’
(E > V3) regions

Differently from the previous case x = if; (k = 1,2). It means that formula

(18) related to the central region X; < R < Xy transforms into a sum of two

complexconjugate terms. The corresponding expressions for the wavefunction and

its logarithmic derivative can be taken from [°]:

(20)

21

(22)

(23)
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1 V +1
Fll(Eaß) = a—lw—iš — yl—2— —Ol

+ (a 1- l)Ci(y1)cos(wl+D1i(y1) —IDIR)
2) C1(y1) cos(wi + Di(yl) — al6lR)

+pCu4l) sin(lpi+ Du(yl) -11R)
Ci(yl) cos(pl + Di(yl) — 461R) °

where C(yl)e’PlW) = S(a1,iB1;1), Ci(n)eP8 = S(a; — 1,iB1;11),
Nl, is the normalization factor and the phase shift ¢o; will be specified in Section 3.

The solution for the region R > X constructed from the functions F and F;
again turns to a sum of two complex conjugate terms (see Table 2), and therefore

W2yy = 2C5 (y2) cos [p2 + Da(y2) — aafaß], R > Xo,

with Co(yz)e'P2o2) = S(ia2, iL2;iy2), p> being the relevant phase shift, and the

fixed value of the normalization factor (N 9 = 2) corresponding to the asymptotic
normalization of the wavefunctions in the continuous energy spectrum (see ],
Section 21)

/ UUVydR = 27hõ(p —p),

where p is the momentum of the particle at infinity.
The wavefunction’s dimensionless logarithmic derivative in this region

becomes

2a919 ) » azggflwin =t (1- %) -
)

Fy»(E,R) =27 V

S e__y%
[A2Us — BV,,

BC3 (y2

where

1 4a3(863 —1)
Aqi gt SRS etyB+l (@+l) (48 +1)

—

— 4Bzaz(s — 48)) B 2
B= -

ma(B2+1)(482+1) B+

02 = p 2 + D2(y2) — a2PR,

U 2 = Re S(iag,'i,Bg; iyz)Re S(’iaz,iflz + l;iy2)

+ S(iaz, 'i,Bg; 'iy2) Im S(’iag,iflg + 1; ’iyg),

(25)

(26)

(27)

(28)
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and

Vo = Re S(’iag,iflg;iyg) X ImS(’iaz,ifiz + l;iyg)

— Im S(?a2, iß2;iy2) Re S(ia2,iß> + 1; iy2).

3. CALCULATION OF ENERGY EIGENVALUES AND

EIGENFUNCTIONS

The bound states can be determined from demand of continuity of the

wavefunction’s logarithmic derivative at a suitable reference point, for example
at R = X,. Indeed, for any given energy E one can evaluate the function

F»(E, X3) given by (23). On the other hand, one may calculate the logarithmic
derivative Fy(FE, X;) according to (16) and then use the continuity condition

Fy(E,X,) = Fi(E, X,) to fix the constant N; in (21). This way one comes to

another expression F (E, X5) for the logarithmic derivative at the boundary point
Xo. These two independent estimations of the same quantity can only coincide for

the true energy eigenvalues £ = E,,, which means that the quantization equation
reduces to the boundary condition

F\(E, X;) = FS(E, X>).

Naturally, instead of X 9 one might use any other reference point within the scope
for the same purpose.

The success in exploiting Eq. (29) depends on the accuracy of the initial

prognoses for the energy levels, which can be made using the Lagrange
extrapolation method, as shown elsewhere [7]. The idea is to take account of the

already ascertained bound states, and the method works well with just fourprevious
levels (Ey, El, Ey, E3) used to estimate the next one

E 4 ~ 4E3 — 6E2 + 4EI — E().

The corresponding exact eigenvalue is then easily found by solving Eq. (29) with

the help of an appropriate iteration procedure. Having determined the eigenvalue
E = E,, one uses the conditions N\/N{™) = Ny, Uo(E,, X 1) = U 1 (En, X1),
U 1 (En, X2) = V2(En, X2), and [7° [¥(E,, R)]?dß = 1 [where U(E,, R) is the

overall wavefunction] to determinethe normalization factors in (10), (18), and (22).
Now, let us concern with the specific features of the quasi-bound eigenstates,

which can be described in terms of the quasi-stationary states, adding a small

imaginary part to each energy level (see [?], Section 134). However, a

more straightforward approach is the investigation of the energy dependence
of the stationary wavefunctions, or equivalently, the energy dependence of the
wavefunction’s phase shift. The latter method, which is widely exploited in

(29)

(30)
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quantum theory of scattering (see [']), is especially interesting due to the abrupt
phase drop, equal to 7, in a very narrow energy range around every quasi-discrete
resonance (see Figs. 9 and 10 in ['2]).

In this paper the quasi-bound levels are fixed as the maxima of the wavefunction

U(E, LTP) depending on energy, with R = LTP(FE) being the solutions of the

equation £ = U(R) in the range R < R, that is, the left classical turning points
(LTP) for the potential. If LTP < X, one directly finds the maximum of the

function Uo(E) = Cy(E,LTP)cos|po(E)+ Do(E,LTP) — apfo(E)LTP]
according to (10). In case LTP > X, one first uses the conditions W(E, X;) =

U 1 (E, X1) and Fo(E, X 1) = FII(FE, X1) to fix the constants Nl, and ¢, (taking,
for example, Ny = 1), and then finds the maximum of the function ¥y,(F)
at R = LTP(FE) according to (24). To reduce the amount of calculations

for ascertaining the quasi-bound resonant states, one again needs good initial

prognoses for these quasi-discrete levels. Fortunately, formula (30) serves for this

purpose as well. Having fixed a quasi-bound state £ = En, one uses the conditions

U 1 (B, X2) = Vo2(En, X2) and Fi (En, X2) = F22(En, X2) to find the actual

values of the normalization factors No, Nll, and the phase shift w 2 in (10), (24),
and (26). Naturally, the same procedure can be performed for any energy (i.e., not

necessarily for the resonances’ maxima) £ > V 5 + D 5 if one is interested in the

corresponding stationary wavefunction.

The results of calculations are presented in Figs. 4-6. They are all related to

the effective potential curve for the rotationally excited xenon excimer, which is

demonstrated in Fig. 4 (where the pseudo-Morse component is not seen, since it

surpasses the bounds of the figure). One can see that due to the extreme narrowness

of the lower resonances there is actually no distinct border between bound and

quasi-bound states. For example, to calculate the exact profile of the lowest

resonance, all 55 (and even more!) decimal places for its maximum on the upper

graph in Fig. 5 should be correct. Apart from the obvious fact that one never could

fix any potential with such an accuracy, the lifetime of this resonance (speaking
in terms of the quasi-stationary states) would be of the order of 1032 years, that is,
much more compared with the age of the Universe. This extraordinary result simply
means that there is no need to associate the lower resonances with the continuous

energy spectrum: in any practical application they can be treated as usual bound

states. Such a claim can be extended to all quasi-bound levels up to the second

highest, and with some caution, even to the highest resonance, as can be inferred

from Fig. 5.

Figure 6 demonstrates that there is actually no need for a high computer
precision to accurately ascertain the stationary wavefunction related to a quasi-
bound level. Indeed, if the maximum of the lowest resonance is fixed with only
9 decimal places, the wavefunction’s actual amplitude in the metastability range
(R < Ry) diminishes by a factor of 1.3409 x 10*7, thus becoming invisible in

its asymptotic free wave’s scale (the lower graph in Fig. 6). In spite of this as if

enormous effect the shape of the wavefunction in the metastability range practically
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Fig. 4. An exactly solvable (solid line on the left graph) substitute potential (dots representing
the original potential) for the rotating xenon excimer in the 0] state. The positions of the

bound (solid horizontal lines) and quasi-bound (dashed lines) levels are also shown.

Fig. 5. The profiles of the resonances (the lowest and the two highest) for the rotating
(J = 350) excimer Xe 3 (07).
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does not change, compared with that for the exact maximum position. Therefore,
even when calculated with the considerably reduced precision, the wavefunction

can be normalized within the range R € (0, Ry), and one needs not worry about

the formally quasi-bound nature of the level. This way the computation time

for determining the whole spectrum of the bound and quasi-bound states can be

dramatically decreased.

4. CONCLUSION

The problem of the exact solubility of the one-dimensional Schrédinger
equation has attracted and inspired theorists since the advent of quantum
mechanics. The interest in this subject has not fallen off, although Infeld and

Fig. 6. Two different wavefunctions related to the lowest quasi-bound state shown on the upper
graph in Fig. 5. One of them (dots) has been calculated for the exact maximum position (with
more than 55 decimal places needed to fix it), while the other (solid line) has been fixed with

the precision of only 9 decimal places. The lower graph represents the free wave'’s part of the

latter wavefunction.
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Hull [*?] classified most of the exactly solvable potentials nearly 50 years ago, and

despite the progress in developing numerical methods ['*!°] and fascinating new

techniques, such as the hierarchical finite element method ['®], in the recent years.

New theoretical findings concerning the exact solubility (often formulated as the

problem for which the Schrédinger equation can be transformed to hypergeometric
or confluent hypergeometric form [l7]) are constantly reported [lß—2o].

In this paper, as in a series of preceding works [6~%], the author aimed to

demonstrate that in a limited distance range the exactly solvable substitute can

be constructed for almost any one-dimensional potential. Such an approach leads

one to a more adequate understanding of the underlying physics, giving some

aesthetic appeal in addition. By varying a relatively small number of parameters
for an exactly solvable probe potential, one can flexibly fit it with the available

experimental data, thus gradually coming closer to the real interactionpotential for

the quantum system.
As was demonstrated in Sections 2 and 3, the method elaborated can be used

to examine all details of a confining potential possessing a pronounced maximum,
for example, an effective potential for a diatomic molecule in a high rotational

substate. The unified quantum-mechanical description of calculating the whole

spectrum of bound, quasi-bound, and free eigenstates for such potentials has been

given. An important result is the exact analytic expression for the phase shift (12),
which is valid for the whole spectrum of the energy eigenstates, in presumption that

the small distances’ range is approximated by a pseudo-Morse potential (a similar

formula for the ordinary Morse potential has been derived elsewhere [®]).
A fundamental problem not touched in this paper is the correct normalization

of the wavefunctions in the continuous energy spectrum. As explained in Section 3,
this problem practically does not concern the quasi-bound states, except the rather

indefinite highest resonance (see the lowest graph in Fig. 6), for which a small

correction of the asymptotic normalization (27) might be needful, if one aims at a

rigorous description. Indeed, as demonstrated in ["], the asymptotic normalization

recommended in handbooks on quantum mechanics is incorrect near the bound

of the discrete and continuous spectra, while the relevant correction factor is well

described by a Fano line shape function [?'].
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TÄPSELT LAHENDUV MAKSIMUMI OMAV POTENTSIAAL

Matti SELG

Uhedimensioonilise Schrodingeri vorrandi lahendamiseks viljatootatud iildist

analiiiitilist meetodit on rakendatud potentsiaalidele, mille koordinaadisdltuvuse

maksimumviirtus iiletab tunduvalt piirvéddrtust lopmatuses. Meetodi pohiidee
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on konstrueerida etteantud ldhtepotentsiaali voimalikult tdpselt lihendav ning
samas tdpselt lahenduv asenduspotentsiaal, mis koosneb mitmest omavahel suju-
valt iihendatud Morse tiitipi (hariliku, iimberpdératud voi pseudo-Morse) kompo-
nendist. T6os on antud tdielik iilevaade koigist analiiiitilistest protseduuridest, mis

on vajalikud konealuse kvantsiisteemi seotud ja kvaasiseotud seisundite spektri
ning vastavate statsionaarsete lainefunktsioonide arvutamiseks. Lisaks sellele on

tuletatud tdpne valem lainefunktsiooni asiimptootilist kditumist médéarava faasinihke

parameetri arvutamiseks suvalise energiavéartuse korral. Meetodi tulemuslikkust

on demonstreeritud korges poorlemisseisundis asuva ksenooni eksimeeri néitel.
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