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Abstract. The Tauberian remainder theorems for the Cesaro method of summability are

studied using two different methods of the proof. Theorem 1 is proved by applying the method

of summability with a given rapidity. Theorem 2 is proved using several consequences of

one basic Wiener’s Tauberian remainder theorem proved by A. Beurling. Both theorems are

connected with the hypothesis ofG. Kangro (see Tammeraid, I. Metody algebry i analiza, 111.

1988, 113-114). .
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Let A = {\,}, 0 < A\, 1. The real sequence z = {£,}, converging to £, is

said (see [l] or [2]) to be A-bounded if the sequence {)\,, (&, — &)} is bounded. Let

us denote by m? the set of all \-bounded sequences z = {¢,} and by m;) the subset

of m* with ¢ = (. We say that the sequence z is A\-bounded by the method A if

Az € m*. We define the set (4, m}) by

z € (A,m}) & Az € my,

where the summability method is determined by the matrix A = (a,r) .
We say

that the method A preserves A-boundedness ifAm* C m*. Kangro [!] proved that

a regular method A with >"22)anx = 1 preserves A-boundedness if and only if

|ank|
—Än ;R O(1). (1)
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The Woronoi-Norlund matrix method of summability (WN,
p,,) is defined

by the sequence of numbers {p,} in the sequence-to-sequence form by the lower

triangular matrix (anx) with apg = pp—x/Pn (K <n)and P, = Y}_px # 0.

In the case p, = A2~! with A = (") the method (W N, A%~!) is the Cesaro

method C'*.

The Riesz matrix method of weighted means P = (R,p,) is defined

by the sequence of numbers {p,}, while a,r =pr/P, (k<n) with

Pn = Zfš:opk # 0.

Kangro [®] proved several Tauberian remainder theorems for the Riesz method

P = (R, p,) .
We present a consequence of them as Lemma 1.

Lemma 1. If the regular Riesz method P = (R, py), where p, > 0, preserves

M-boundedness and the conditions

1< )\n/Tn h AT, Kn = VÄnTn (2)

PrVAn = O(Pr-1/mn) (n = +00),

T ={} € ((R,pn),m)‘),

TnPalén = OL(pn)

3)

are fulfilled, then x € m*.

Kangro (see [*]) posed a hypothesis that an analogical assertion is valid for the

Cesaro method C* (« > 0). This hypothesis is not verified up to now.

Hypothesis. Let the sequences \ = {\p}, 7 = (Tn), and u = {un} satisfy the

conditions (2). Let the Cesaro method C* (a > 0) preserve \-boundedness. If a

sequence z = {&,} is A\-bounded by the method C® and the left-handed Tauberian

condition

Tn (n+ 1) Afn = OL(I)

is satisfied, then x € m*.

Theorems 1 (see also [°~B]) and 2 (see also [*l°]) are closely related to

the Hypothesis, but unfortunately do not verify its trueness or falsehood. The

assumptions and assertions of Theorems 1 and 2 are essentially conditioned by
the method used for the proof.

Theorem 1. Let o € N and

Ant, nt Än/'rn t Kn = Äš—a'ryž—z—a-

If the Cesaro method C* preserves \-boundedness, then from the C*-boundedness

of the sequence x = {£,} and left-handed Tauberian condition



m(n+l) A& =0 (1) (4)
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follows the i -boundedness of x.

Proof. According to (1), the method C! preserves A-boundedness, iff

A l

n+lšz—o(l)
As the condition ), /7, 1 implies

17-I—<2‘—7—l (v <n),
Ty

—

v

then from the connections (5) and (6) we get

r Al b 1 A
MVVi -

— RLN —ST On-I—IVZ:OT,, n+lš7„—n+lšA„ (1),

that means

n

Tn 1

——————ž — = O(1).
n+lu=o'r„

()

Therefore the method C'! preserves also 7-boundedness. For arbitrary n € N the

quantity

‘Pn(fi)zT_n
; Alg_l

Ažš—;u— (B €N)

is a decreasing function (see [®]) of the variable 3. As by the relation (7)
we have ¢,(1) = O(1), then ¢,(5) = O(1). It means that the Riesz method

P = (R, Až—l) preserves both 7-boundedness and A-boundedness. Let

-55 tB o
v=o An

As p,(B) = O(1), the relation

(n+ 1) T,AcP+ = 0(1)

follows from the relation

(n+ 1) mAc? = 01(1).

(5)

(6)

(7)
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Indeed, as at 8 € N U {o} we have (see [°])

pi

LN AD
gbty B+l v

v=o A"

and

1
n

Aobt —LFL—- 57 4B+ AR,
(n+B+2) A

=

then

(n+l) TaAcPT! =

Br+l(n+l)T
:

gt
=MJAYN

(n+B+2) ABT! 2. 47 Ao
v=o

=Or (1) —
p .—AE...

AR+ ~Zzo (v +l)7y
n

=-O;(1) —M Ay
L(1)

2 ZOT— = OL(1).
V=

v

Consequently, the relation

(n+l) T„Aaš =0r(1) (BENU(0))

follows from the condition (4). As by the assumption the Cesaro method C*

preserves A-boundedness, then (see [']) A\, = o(n). That is why at 7, 1 the

additional condition (3), the specific one in the Kangro’s Tauberian theorems with

the one-sided Tauberian conditions,

A =0((n+1)*7),

is fulfilled. Let us apply Lemma 1, selecting p, = 4%71. We get

—1 (1)
C reEm"

,

while ,A,” = v/AnTn. As the next step, selecting p,, = A%~2, we prove that

Ca—2T € m“(z)

with 12 = VV = A27*71-27" Step by step we get the assertion of

Theorem 1.

Lemma 2 is used for the proof of Theorem2. Lemma 2 follows from Corollary
1 and Remark 1 of the article ['°] (see also Beurling’s basic Tauberian remainder
theorem [11]).
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Lemma 2. Let o € N and a normal matrix method D satisfy the condition

(PD7')my C mg,

while P is a matrix of the Woronoi-Nérlund method (WN, (n + 1)* — n®). Let

A={dn}, s={a}, An =(1+1)*, n =(n+l)Y+l, 0< s <l/(27).

If x = {&,} is a bounded sequence satisfying the left-handed Tauberian condition

pn (€m —&) =Ol(1) (np<n<m<mnexp(l/p,), n—o0)

and x € (D,m}), then z € mj;.

Theorem2. Let oo € N. Let the sequences \ = {\,} and p = {p,,} be determined

by 9). If x = {{,} is a bounded sequence satisfying the left-handed Tauberian

condition (10) and z € (C*,m}), then T € m).

Proof. We intend to apply Lemma 2 with D = C“. If we denote by

N =(n+ 1)"“ž((n+ 1— k)* — (n— k)*)Ex
k=o

and
n

a 5 =) (AT 16)ME,
k=o

then (see ['2])
n

—

—a-l 4a .aCn—zAn—k AkOk
k=o

and

n k

((n+l—k)* — (n — k)*) ilAg 5tRN tdios
k=o

(n+l)
v=o

n n a A

—

aa -a-1((n+1—k)" —(n—k)”)

n n—y -\ (¥ -\ (Y

N
+l-v—-9)%=(n—-v—l)%

= Aoy A I&"___________—__
2AA RID

n

Aaaa
n—v+l

= )L N AT Pn-v+l-4)%
v=o

(n+l)a
I=o

(8)

(9)

(10)
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As A7%2 = 0 (i>a+l)and 47272 = (=I)IA2TI (o<i<a+l)
(see [b]), we have

n
Aago

min(n+l-v,a+l)
e ( -)aA

— vV =1 AT *(n+l—-v—l2)".%= X e 24 4

Using a generating function

a+l
a+l,_n—-v—a

—

1 qa+l—l _n+l—v—i(x -1z = ž (—1)" A 3 T
I=o

we get an equality

> (1) A+ I—v —i)* =O.

I=o j
(11)

Accordingly, we obtain

in(n+l—v,

a
— žn: Affaf,' mm("z a)(—l)iAq+l—i (n a 1 - i)a :mT
) i

Through the mathematical induction for every a € N it is easy to prove that

a+l

» (F)ATTT(n+l-v—i)*<o (I<n+l-v<a).
t=n+2—v

(12)

From (11) and (12) we conclude

n+l—-v | |
Y (DAi(n+l-v-i)* >0 (I<n+l-v<o).
I=o

It means that the matrix (a,) of the method

(WN, (n+l)* = n%®) (C*)™}

is a lower a-diagonal matrix with positive elements on these diagonals. Thus this

method is a regular method (see ['?]) with ">, anx = 1 and the condition (1) is

fulfilled. We consequently get that this method preserves A-boundedness when the

condition (8) is satisfied. Therefore the normal matrix method D = C“ satisfies

the conditions ofLemma 2 and the trueness of Theorem 2 follows from this lemma.
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Remark 1. The condition

(n+l)A¢, = 0r(1) (n — 00)

implies (10).

Remark 2. The analogous theorems to Theorems 1 and 2 are also valid in the

cases of right-handed or two-sided Tauberian conditions. In the case of two-

sided Tauberian conditions the assertions of the analogous theorems stay valid for

sequences belonging to an arbitrary Banach space (see [l'l%l4]). Using ['°], new

Tauberian remainder theorems can be obtained from Theorems 1 and 2.
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KAKS JÄÄKLIIKMEGA TAUBERI TEOREEMI CESARO

MENETLUSE JAOKS

Ivar TAMMERAID

On uuritud jadkliikkmega Tauberi teoreeme Cesaro menetluse korral. Toesta-

miseks on kasutatud kaht meetodit. Teoreem 1 on toestatud meetodil, mis pohineb
kiirusega summeeruvuse omadustel. Teoreemi 2 tdestamiseks on kasutatud

moningaid jdreldusi A. Beurlingi toestatud Wieneri tiitipi jadkliikmega Tauberi

teoreemist. Molemad teoreemid on seotud G. Kangro hiipoteesiga.
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