Proc. Estonian Acad. Sci. Phys. Math., 2000, **49**, 4, 225–232 https://doi.org/10.3176/phys.math.2000.4.03

TWO TAUBERIAN REMAINDER THEOREMS FOR THE CESÀRO METHOD OF SUMMABILITY

Ivar TAMMERAID

Department of Mathematics, Tallinn Technical University, Ehitajate tee 5, 12618 Tallinn, Estonia; itammeraid@edu.ttu.ee

Received 30 March 2000, in revised form 31 August 2000

Abstract. The Tauberian remainder theorems for the Cesàro method of summability are studied using two different methods of the proof. Theorem 1 is proved by applying the method of summability with a given rapidity. Theorem 2 is proved using several consequences of one basic Wiener's Tauberian remainder theorem proved by A. Beurling. Both theorems are connected with the hypothesis of G. Kangro (see Tammeraid, I. *Metody algebry i analiza*, III. 1988, 113–114).

Key words: Tauberian remainder theorems.

Let $\lambda = \{\lambda_n\}, 0 < \lambda_n \uparrow$. The real sequence $x = \{\xi_n\}$, converging to ξ , is said (see [¹] or [²]) to be λ -bounded if the sequence $\{\lambda_n (\xi_n - \xi)\}$ is bounded. Let us denote by m^{λ} the set of all λ -bounded sequences $x = \{\xi_n\}$ and by m_0^{λ} the subset of m^{λ} with $\xi = 0$. We say that the sequence x is λ -bounded by the method A if $Ax \in m^{\lambda}$. We define the set (A, m_0^{λ}) by

$$x \in (A, m_0^{\lambda}) \Leftrightarrow Ax \in m_0^{\lambda},$$

where the summability method is determined by the matrix $A = (a_{nk})$. We say that the method A preserves λ -boundedness if $Am^{\lambda} \subset m^{\lambda}$. Kangro [¹] proved that a regular method A with $\sum_{k=0}^{\infty} a_{nk} = 1$ preserves λ -boundedness if and only if

$$\lambda_n \sum_k \frac{|a_{nk}|}{\lambda_k} = O(1). \tag{1}$$

The Woronoi–Nörlund matrix method of summability (WN, p_n) is defined by the sequence of numbers $\{p_n\}$ in the sequence-to-sequence form by the lower triangular matrix (a_{nk}) with $a_{nk} = p_{n-k}/P_n$ $(k \le n)$ and $P_n = \sum_{k=0}^n p_k \ne 0$. In the case $p_n = A_n^{\alpha-1}$ with $A_n^{\alpha} = \binom{n+\alpha}{n}$ the method $(WN, A_n^{\alpha-1})$ is the Cesàro method C^{α} .

The Riesz matrix method of weighted means $P = (R, p_n)$ is defined by the sequence of numbers $\{p_n\}$, while $a_{nk} = p_k/P_n$ $(k \le n)$ with $P_n = \sum_{k=0}^n p_k \ne 0$.

Kangro [³] proved several Tauberian remainder theorems for the Riesz method $P = (R, p_n)$. We present a consequence of them as Lemma 1.

Lemma 1. If the regular Riesz method $P = (R, p_n)$, where $p_n > 0$, preserves λ -boundedness and the conditions

$$1 \le \lambda_n / \tau_n \uparrow, \quad \lambda_n \tau_n \uparrow, \quad \mu_n = \sqrt{\lambda_n \tau_n}, \tag{2}$$

$$p_n \sqrt{\lambda_n} = O(P_{n-1}\sqrt{\tau_n}) \quad (n \to +\infty), \tag{3}$$
$$x = \{\xi_n\} \in ((R, p_n), m^{\lambda}),$$
$$\tau_n P_n \Delta \xi_n = O_L(p_n)$$

are fulfilled, then $x \in m^{\mu}$.

Kangro (see [⁴]) posed a hypothesis that an analogical assertion is valid for the Cesàro method C^{α} ($\alpha > 0$). This hypothesis is not verified up to now.

Hypothesis. Let the sequences $\lambda = \{\lambda_n\}, \tau = \{\tau_n\}, \text{ and } \mu = \{\mu_n\}$ satisfy the conditions (2). Let the Cesàro method C^{α} ($\alpha > 0$) preserve λ -boundedness. If a sequence $x = \{\xi_n\}$ is λ -bounded by the method C^{α} and the left-handed Tauberian condition

$$\tau_n \ (n+1) \ \Delta \xi_n = O_L(1)$$

is satisfied, then $x \in m^{\mu}$.

Theorems 1 (see also $[5^{-8}]$) and 2 (see also $[9,1^{0}]$) are closely related to the Hypothesis, but unfortunately do not verify its trueness or falsehood. The assumptions and assertions of Theorems 1 and 2 are essentially conditioned by the method used for the proof.

Theorem 1. Let $\alpha \in \mathbf{N}$ and

$$\lambda_n \uparrow, \tau_n \uparrow, \lambda_n / \tau_n \uparrow, \mu_n = \lambda_n^{2^{-\alpha}} \tau_n^{1-2^{-\alpha}}$$

If the Cesàro method C^1 preserves λ -boundedness, then from the C^{α} -boundedness of the sequence $x = \{\xi_n\}$ and left-handed Tauberian condition

$$\tau_n \left(n+1 \right) \Delta \xi_n = O_L \left(1 \right) \tag{4}$$

follows the μ -boundedness of x.

Proof. According to (1), the method C^1 preserves λ -boundedness, iff

$$\frac{\lambda_n}{n+1} \sum_{\nu=0}^n \frac{1}{\lambda_{\nu}} = O(1).$$
 (5)

As the condition $\lambda_n/\tau_n \uparrow$ implies

$$\frac{\tau_n}{\tau_\nu} \le \frac{\lambda_n}{\lambda_\nu} \quad (\nu \le n) \,, \tag{6}$$

then from the connections (5) and (6) we get

$$\frac{\tau_n}{n+1}\sum_{\nu=0}^n \frac{1}{\tau_\nu} = \frac{1}{n+1}\sum_{\nu=0}^n \frac{\tau_n}{\tau_\nu} \le \frac{1}{n+1}\sum_{\nu=0}^n \frac{\lambda_n}{\lambda_\nu} = O(1),$$

that means

$$\frac{\tau_n}{n+1} \sum_{\nu=0}^n \frac{1}{\tau_\nu} = O(1). \tag{7}$$

Therefore the method C^1 preserves also τ -boundedness. For arbitrary $n \in \mathbb{N}$ the quantity

$$\varphi_n\left(\beta\right) = \frac{\tau_n}{A_n^\beta} \sum_{\nu=0}^n \frac{A_\nu^{\beta-1}}{\tau_\nu} \quad (\beta \in \mathbf{N})$$

is a decreasing function (see [⁶]) of the variable β . As by the relation (7) we have $\varphi_n(1) = O(1)$, then $\varphi_n(\beta) = O(1)$. It means that the Riesz method $P = (R, A_n^{\beta-1})$ preserves both τ -boundedness and λ -boundedness. Let

$$\sigma_n^\beta = \sum_{\nu=0}^n \frac{A_{n-\nu}^{\beta-1}}{A_n^\beta} \xi_\nu.$$

As $\varphi_n(\beta) = O(1)$, the relation

$$(n+1)\,\tau_n\Delta\sigma_n^{\beta+1} = O_L(1)$$

follows from the relation

$$(n+1)\,\tau_n\Delta\sigma_n^\beta=O_L(1).$$

227

Indeed, as at $\beta \in \mathbf{N} \cup \{0\}$ we have (see [⁶])

$$\sigma_n^{\beta+1} = \sum_{\nu=0}^n \frac{A_\nu^\beta}{A_n^{\beta+1}} \sigma_\nu^\beta$$

and

$$\Delta \sigma_n^{\beta+1} = \frac{\beta+1}{\left(n+\beta+2\right)A_n^{\beta+1}} \sum_{\nu=0}^n A_\nu^{\beta+1} \Delta \sigma_\nu^\beta,$$

then

$$(n+1) \tau_n \Delta \sigma_n^{\beta+1} = \frac{(\beta+1)(n+1)\tau_n}{(n+\beta+2)A_n^{\beta+1}} \sum_{\nu=0}^n A_{\nu}^{\beta+1} \Delta \sigma_{\nu}^{\beta}$$
$$= O_L(1) \frac{\tau_n}{A_n^{\beta+1}} \sum_{\nu=0}^n \frac{A_{\nu}^{\beta+1}}{(\nu+1)\tau_{\nu}}$$
$$= O_L(1) \frac{\tau_n}{A_n^{\beta+1}} \sum_{\nu=0}^n \frac{A_{\nu}^{\beta}}{\tau_{\nu}} = O_L(1).$$

Consequently, the relation

$$(n+1) \tau_n \Delta \sigma_n^\beta = O_L(1) \quad (\beta \in \mathbf{N} \cup \{0\})$$

follows from the condition (4). As by the assumption the Cesàro method C^1 preserves λ -boundedness, then (see [¹]) $\lambda_n = o(n)$. That is why at $\tau_n \uparrow$ the additional condition (3), the specific one in the Kangro's Tauberian theorems with the one-sided Tauberian conditions,

$$\lambda_n = O((n+1)^2 \tau_n),$$

is fulfilled. Let us apply Lemma 1, selecting $p_n = A_n^{\alpha-1}$. We get

$$C^{\alpha-1}x \in m^{\mu^{(1)}},$$

while $\mu_n^{(1)} = \sqrt{\lambda_n \tau_n}$. As the next step, selecting $p_n = A_n^{\alpha - 2}$, we prove that

$$C^{\alpha-2}x \in m^{\mu^{(2)}}$$

with $\mu_n^{(2)} = \sqrt{\sqrt{\lambda_n \tau_n} \tau_n} = \lambda_n^{2^{-2}} \tau_n^{1-2^{-2}}$. Step by step we get the assertion of Theorem 1.

Lemma 2 is used for the proof of Theorem 2. Lemma 2 follows from Corollary 1 and Remark 1 of the article $[^{10}]$ (see also Beurling's basic Tauberian remainder theorem $[^{11}]$).

Lemma 2. Let $\alpha \in \mathbf{N}$ and a normal matrix method D satisfy the condition

$$(PD^{-1})m_0^\lambda \subset m_0^\lambda,\tag{8}$$

while P is a matrix of the Woronoi–Nörlund method $(WN, (n+1)^{\alpha} - n^{\alpha})$. Let

$$\lambda = \{\lambda_n\}, \ \mu = \{\mu_n\}, \ \lambda_n = (n+1)^s, \ \mu_n = (n+1)^{s/(1+\alpha)}, \ 0 < s < 1/(2\pi).$$
(9)

If $x = \{\xi_n\}$ is a bounded sequence satisfying the left-handed Tauberian condition

$$\mu_n \left(\xi_m - \xi_n \right) = O_L \left(1 \right) \quad (n_0 < n < m < n \exp\left(1/\mu_n \right), \ n \to \infty) \tag{10}$$

and $x \in (D, m_0^{\lambda})$, then $x \in m_0^{\mu}$.

Theorem 2. Let $\alpha \in \mathbb{N}$. Let the sequences $\lambda = \{\lambda_n\}$ and $\mu = \{\mu_n\}$ be determined by (9). If $x = \{\xi_n\}$ is a bounded sequence satisfying the left-handed Tauberian condition (10) and $x \in (C^{\alpha}, m_0^{\lambda})$, then $x \in m_0^{\mu}$.

Proof. We intend to apply Lemma 2 with $D = C^{\alpha}$. If we denote by

$$\varsigma_n^{\alpha} = (n+1)^{-\alpha} \sum_{k=0}^n \left((n+1-k)^{\alpha} - (n-k)^{\alpha} \right) \xi_k$$

and

$$\sigma_n^{\alpha} = \sum_{k=0}^n (A_{n-k}^{\alpha-1}\xi_k)/A_n^{\alpha},$$

then (see $[^{12}]$)

$$\xi_n = \sum_{k=0}^n A_{n-k}^{-\alpha-1} A_k^\alpha \sigma_k^\alpha$$

and

$$\begin{split} & \stackrel{\alpha}{n} = \sum_{k=0}^{n} \frac{\left((n+1-k)^{\alpha}-(n-k)^{\alpha}\right)}{(n+1)^{\alpha}} \sum_{\nu=0}^{k} A_{k-\nu}^{-\alpha-1} A_{\nu}^{\alpha} \sigma_{\nu}^{\alpha} \\ & = \sum_{\nu=0}^{n} A_{\nu}^{\alpha} \sigma_{\nu}^{\alpha} \sum_{k=\nu}^{n} A_{k-\nu}^{-\alpha-1} \frac{\left((n+1-k)^{\alpha}-(n-k)^{\alpha}\right)}{(n+1)^{\alpha}} \\ & = \sum_{\nu=0}^{n} A_{\nu}^{\alpha} \sigma_{\nu}^{\alpha} \sum_{i=0}^{n-\nu} A_{i}^{-\alpha-1} \frac{\left((n+1-\nu-i)^{\alpha}-(n-\nu-i)^{\alpha}\right)}{(n+1)^{\alpha}} \\ & = \sum_{\nu=0}^{n} \frac{A_{\nu}^{\alpha} \sigma_{\nu}^{\alpha}}{(n+1)^{\alpha}} \sum_{i=0}^{n-\nu+1} A_{i}^{-\alpha-2} (n-\nu+1-i)^{\alpha}. \end{split}$$

As $A_i^{-\alpha-2} = 0$ $(i > \alpha + 1)$ and $A_i^{-\alpha-2} = (-1)^i A_i^{\alpha+1-i}$ $(0 \le i \le \alpha + 1)$ (see [¹²]), we have

$$\varsigma_n^{\alpha} = \sum_{\nu=0}^n \frac{A_{\nu}^{\alpha} \sigma_{\nu}^{\alpha}}{(n+1)^{\alpha}} \sum_{i=0}^{\min(n+1-\nu,\alpha+1)} (-1)^i A_i^{\alpha+1-i} (n+1-\nu-i)^{\alpha}.$$

Using a generating function

$$(x-1)^{\alpha+1}x^{n-\nu-\alpha} = \sum_{i=0}^{\alpha+1} (-1)^i A_i^{\alpha+1-i}x^{n+1-\nu-i}$$

we get an equality

$$\sum_{i=0}^{\alpha+1} (-1)^i A_i^{\alpha+1-i} (n+1-\nu-i)^{\alpha} = 0.$$
⁽¹¹⁾

Accordingly, we obtain

$$\varsigma_n^{\alpha} = \sum_{\nu=0}^n \frac{A_{\nu}^{\alpha} \sigma_{\nu}^{\alpha}}{(n+1)^{\alpha}} \sum_{i=0}^{\min(n+1-\nu,\alpha)} (-1)^i A_i^{\alpha+1-i} (n+1-\nu-i)^{\alpha}.$$

Through the mathematical induction for every $\alpha \in \mathbf{N}$ it is easy to prove that

$$\sum_{i=n+2-\nu}^{\alpha+1} (-1)^i A_i^{\alpha+1-i} \left(n+1-\nu-i\right)^{\alpha} < 0 \quad (1 \le n+1-\nu \le \alpha).$$
(12)

From (11) and (12) we conclude

$$\sum_{i=0}^{n+1-\nu} (-1)^i A_i^{\alpha+1-i} (n+1-\nu-i)^{\alpha} > 0 \quad (1 \le n+1-\nu \le \alpha).$$

It means that the matrix (a_{nk}) of the method

$$(WN, (n+1)^{\alpha} - n^{\alpha}) (C^{\alpha})^{-1}$$

is a lower α -diagonal matrix with positive elements on these diagonals. Thus this method is a regular method (see [¹²]) with $\sum_{k=0}^{\infty} a_{nk} = 1$ and the condition (1) is fulfilled. We consequently get that this method preserves λ -boundedness when the condition (8) is satisfied. Therefore the normal matrix method $D = C^{\alpha}$ satisfies the conditions of Lemma 2 and the trueness of Theorem 2 follows from this lemma.

Remark 1. The condition

$$(n+1)\Delta\xi_n = O_L(1) \qquad (n \to \infty)$$

implies (10).

Remark 2. The analogous theorems to Theorems 1 and 2 are also valid in the cases of right-handed or two-sided Tauberian conditions. In the case of two-sided Tauberian conditions the assertions of the analogous theorems stay valid for sequences belonging to an arbitrary Banach space (see $[^{1,13,14}]$). Using $[^{15}]$, new Tauberian remainder theorems can be obtained from Theorems 1 and 2.

REFERENCES

- 1. Kangro, G. Summability factors for the series λ -bounded by the methods of Riesz and Cesàro. Acta Comment. Univ. Tartuensis, 1971, 277, 136–154 (in Russian).
- 2. Leiger, T. Funktsionaalanalüüsi meetodid summeeruvusteoorias. TU, Tartu, 1992.
- 3. Kangro, G. A Tauberian remainder theorem for the Riesz method II. Acta Comment. Univ. Tartuensis, 1972, 305, 156–166 (in Russian).
- 4. Tammeraid, I. On theorem of G. Kangro. In *Metody algebry i analiza, III: Tezisy dokladov konferentsii, 21–23 sept. 1988.* Tartu, 1988, 113–114 (in Russian).
- Stadtmüller, U. On a family of summability methods and one-sided Tauberian conditions. J. Math. Anal. Appl., 1995, 196, 99–119.
- 6. Tammeraid, I. Tauberian remainder theorems for the Cesàro and Hölder methods of summability. *Acta Comment. Univ. Tartuensis*, 1971, 277, 161–170 (in Russian).
- 7. Tammeraid, I. Wiener's Tauberian remainder theorems and summability with rapidity. *Trans. Tallinn Tech. Univ.*, 1994, 738, 45–50.
- Tammeraid, I. Jääkliikmega Tauberi teoreem Cesàro summeerimismenetluse jaoks. In Algebra ja analiüisi meetodid, V. Tartu, 1998, 35.
- 9. Tammeraid, I. On the comparison of Tauberian remainder theorems. *Proc. Estonian Acad. Sci. Phys. Math.*, 1996, **45**, 234–241.
- Tammeraid, I. Tauberian remainder theorems for two families of summability methods. *Proc. Estonian Acad. Sci. Phys. Math.*, 2000, 49, 183–189.
- 11. Subkhankulov, M. A. Tauberian Remainder Theorems. Nauka, Moscow, 1976 (in Russian).
- 12. Baron, S. Introduction to the Theory of Summability of Series. Valgus, Tallinn, 1977 (in Russian).
- 13. Kangro, G. On matrix transformations of sequences in Banach Spaces. Proc. Estonian Acad. Sci. Tech. Phys. Math., 1956, 5, 108–128 (in Russian).
- 14. Sõrmus, T. Some properties of generalized summability methods in Banach spaces. *Proc. Estonian Acad. Sci. Phys. Math.*, 1997, **46**, 171–186.
- Parameswaran, M. R. New Tauberian theorems from old. Can. J. Math., 1994, 46, 380– 394.

KAKS JÄÄKLIIKMEGA TAUBERI TEOREEMI CESÀRO MENETLUSE JAOKS

Ivar TAMMERAID

On uuritud jääkliikmega Tauberi teoreeme Cesàro menetluse korral. Tõestamiseks on kasutatud kaht meetodit. Teoreem 1 on tõestatud meetodil, mis põhineb kiirusega summeeruvuse omadustel. Teoreemi 2 tõestamiseks on kasutatud mõningaid järeldusi A. Beurlingi tõestatud Wieneri tüüpi jääkliikmega Tauberi teoreemist. Mõlemad teoreemid on seotud G. Kangro hüpoteesiga.