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Abstract. Numerical evaluation of weakly singular integrals with composite quadrature
rules on graded grids is considered. The dependence of the error of the quadrature rule on

nonuniformity of the grid is studied. The conditions under which a quadrature rule with

nonuniform grid converges in case of a singular integrand with the same rate as the same

rule with uniform grid does in case of a smooth integrand are discussed. Theoretical results

are verified by numerical examples in case of the composite Gaussian quadrature rule and

composite Simpson’s rule. "
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1. INTRODUCTION

We consider numerical evaluation of integrals

b

/ f(@)dz (b>o),
0

where the integrand f(z) can have singularity only at 0. We assume that f €

Ckv(o,b] [l], i.e. that f(z) is k times, kK > 1, continuously differentiable for

z € (o,b] = {z: 0 < z < b} and that in this domain

| 1 if i<l-y,
IfO(z) <e{ I+|logz| if i=l-v,

" if i>ll-vy,

(1)

(2)
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where 7 = 0,1,...,k and index singularity v < 2. If v > 1, then f(z) can be

unbounded at 0; for v < 1 it is bounded but its derivatives can be unbounded. For

v < 1 we take f(z) continuous on [o,b] = {z: 0 <z < b}.
We list some typical functions satisfying the assumptions (2).

1) The functions f(z) = z%g(x) satisfy the conditions (2) with v = 1 — « if

a>—l,a#o,g€C*oo,b] and .

!g(i)(a:)l <cz™t for (0,6], i=0,1,...,k.

2) The functions of the form f(z) = z™ log(z) g(z) satisfy the conditions (2)

with v = 1 — m ifm is a nonnegative integer and g € C*[o, b].
3) The functions z®(log z)™g(z) satisfy the conditions (2) withv =1 —a+¢

if @ > —l, m is a positive integer, and g € C*[o, b]. Here ¢ is an arbitrary (small)

positive constant such that 1 — a + ¢ < 2.

Thenumerical treatment of weakly singular integrals is studied, for example, in

[2]. The use of the product integration method for the evaluation of such integrals is

discussed in [>~°]. The computation of weakly singular integrals with trapezoidal
rule and with Gaussian quadratures on graded grids is considered respectively in

[26] and []. The present paper deals with the computation of weakly singular
integrals with composite quadrature formulas on graded grids. As opposed to other

available results about high-order numerical methods, this one is fully discrete; it

does not assume that certain integrals can be computed exactly. It is shown under

which conditions a quadrature rule with nonuniform grid converges in case of a

singular integrand with the same rate as the same rule with uniform grid does in case

of a smooth integrand. The computation of integrals with composite quadrature
rules is simpler than with product integration methods, but for the evaluation of the

integral with the same accuracy it is necessary to use a more nonuniform grid.
At the end of the paper theoretical results are verified by numerical examples

in case of the composite Gaussian quadrature rule and composite Simpson’s rule.

2. THE CONVERGENCE RATE OF COMPOSITE QUADRATURE
RULES

We use a quadrature formula

1
m

/ U(z)dz ~ Y w;Y(Eg)
21 g=l

which is exact for all polynomials of degree u, 0 < m — 1 < u < 2m —1, for

instance, for the trapezoidal rule m = 2 and p = 1, for Simpson’s rule m = 3
and u = 3, for Gaussian quadrature u = 2m — 1. We assume that the knots of the

formula (3) satisfy the conditions

MECH<E..X<l

(3)
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We divide the interval [O, b] of integration with grid points

j)r j=0,1,...,N,

into N subintervals [z;_i,z;], j = 1,...,N. Here the real number r>1
characterizes the nonuniformity of the grid. If » = 1, then the grid points are

uniformly located. Note that zo = 0 and zy = b. For the evaluation of the

integral (1) we use the composite quadrature rule

bN
o

m

[I@ds =270 + 3LSS wad (o) + R

0 j=2 g=l

where¢ = /2 and

§ig = Tj—l+ fq_+l(
5 (& -Zj-1).

Note that on the first interval [O, ;] the rectangular rule and on the intervals

[zj-1,%;], 7 =2,..., N, the quadrature rule (3) is used.

About the convergencerate of the quadrature rule (4) the following result holds.

Theorem 1. Assume that the quadrature formula (3) is exactfor all polynomials of
degree u, f € CW. 0 < v < 2andm - 1 < u < 2m — 1. Then for the error

Rn of the guadrature rule (4) the following estimates hold

-r(2— ; 2

IR |<c{N
el I_<_7”Sg__*_u,

N|>
g} - + 2

NF Wr

Proof. We use some ideas from [!]. In addition to the knots &i,...,&n,, we

fix in the interval (—1,1) u — m +1 knots Em4+l,--+,Eu+l 80 that €; £ E; if

i £ j and generate by the formula (5) the corresponding knots {;, € (z;-1,%;),
g=m+1,...,u+1,5=2,..., N. We define the interpolation projector Py by
the formula

Eq ’ q ) [ ] ] ] 2 ]l

where ¢;,(x) are the polynomials of degree . such that

1 if p=g,
Pja(Ejp) =

0 f pžg,p=l,...,u+l.

(4)

(5)

(6)



218

Then (PNf)(qu) = f(é]q)v g = 13"-7 n+ 1’.7 = 2,"'7N9 and (PNf)(x) is

on [z;_l,z;], j = 2,..., N, the polynomial of the degree not exceeding 1. Due to

the exactness of the formula (3), for the polynomials of degree p we have

j

/ (Prf)(o)dr =
LD

j-1

:
S

wqf(qu)v .7 =27"'7N

Therefore the error Ry of the quadrature rule (4) is given by

T 1 N Tj

R = /[f(2) — HE)]dz+57 / [f(2) - (Prf)(o)]dz,
0 j=2

Tj-1

where¢ = zl/2.
First of all we estimate the first integral in (7). As

He)- H= /f(s)ds, -z € (0,24],

€

then

7[f(-75) — f(E)]dz =

i

J 0/{f(s)dsd:z:-!—{/f/f'(s)dsd:v
= —O/Sf'(s)ds + !(xl —s)f'(s)ds.

Thus

I E z 1

| /[f(z) - f<f>ldw4 < / s|f'(s)|ds + /(21 — B)|f'(s)|ds
0 0 ¢

<

lslf/(s)lds
<

c xlsl—uds
— sz—u,-0/ =O/ 2-pv'!

| [to - t(o]de] < at
0

10

i.e.

(7)

(8)
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Now we estimate the remaining integrals in (7). Let v(z) be an arbitrary
polynomial of degree x on [z;_l,%;],j = 2,...,N. Then, for z € [z;_l,z;],
(Pnv)(z) = v(z) and

|f(z) = (Pnf)(z)| < |f(z) —v(z)| + [(Pno)(z) — (PNf)()]

As in [3] we obtain

sup |(Pnv)(z)=(Pnf)(z)|<c sup |o(z)-f(=)],
Tj-I<T<T; Tj-I<T<7Tj

where the constant ¢ does not depend on j and N, then

sup |f(z) — (Pnf)(@)|<(l+¢) sup |f(z)—v(z),j=2,...,N.
Tj-I<T<T;j Tj-I<T<Tj

If v(z) is the Taylor polynomial

& f

then, due to (2),

1@ - =| [2-" a < 5[(5- )"a
z € [zj_l,%;].

Sincehere 0 < s—z <z; —z;_landz; > s > z;_l > 27"z, it follows that

sup |f(z) —v(z)| < co(z; — zj-1)**" 27"
Tj-I<T<7T;j

and with the help of (9) we get

x/ 1(z) — (Pnf)(2)ldz < ca(zj — zjl)PPz *7", §=2,...,N.

From formulas (7), (8), and (10) it now follows that

RN SC4[s2_"+ ž —

2 (-'L'j T )p+2 -

j=2

7 m'u—u]j
.

Asz; =b(j/N) and 0 < z; — 2j—l < br j7~!/N", we have

Ryl < es|[ N 7 +N EN:+N r(2—-v) r(2—v)
j

—V)—p—2

=2

]

(9)

(10)
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Ifr(2—v)<p+2,then

N

zjr(2-—u)—u—2 <N

j=2

and

IRNI < cN—r(2—V)+l :
Butifr(2 —v) > p + 2, then

> jr(2—u)—u—2
2,

< Nr(2—u)—p.—l

and we get
IRN| < eN~FI,

Theorem 1 is proved.

Remark. If 1 < v < 2, then

I T

/f(a:)dml < c/a:l—"da: = Z—%x%—”
0 0

and the estimates (6) hold also in the case when on the first interval [O, z;] the

integrand f(x) is replaced with 0, i.e. for the error Rv of the quadrature rule

b
N

flz)dz = Tj—Vjl
S

0/ » SDet + R

Although the convergence rate of this quadrature rule is almost the same as that

of the quadrature rule (4), the rule (4) usually approximates the integral (1) a little

better. Note that in [7] the convergence of the quadrature rule (11) corresponding to

the Gaussian quadrature (3) is studied and for this particular case the second from

the estimates (6) is proved.
If v < 1, then the integrand f(z) is continuous on [O, b] and it is appropriate

to use formula (3) also on [O, z;], i.e. we can use for the integral (1) the composite
quadrature rule ;

b
N

fz)de=SL oimt
S

0/ >A f(65) + R

where the knots ¢, are calculated by (5). For this rule the following result holds

(11)

(12)
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Theorem 2. Assume that quadrature formula (3) is exact for all polynomials of
degree u, f € CHtW. .y < landm =1 < u < 2m — 1. Then the error Ry of
the quadrature rule (12) satisfies in the case v > —u the estimates (6), in the case

v= — the estimates

N+ IllogN if r=l,|RN|s‘3{ N 1 if r>l,

and in the case v < —u the estimate

IRN <cNFI 4|<e if r2l.

Proof. As in the proof of Theorem 1 we can show that the error R of the

quadrature rule (12) is given by

Nn ö

Ry= š/ [f(2) - (Pxf)(o)]dr

and that

3

swp 1f(0) = (Pup@l<c_sup [(o= lf@0 s)lda,
Zj-I<r<T; Tj-I<T<Tj

j=1,...,N.

It follows immediately from (13) and (2) that for j = 2,..., N

3 1 if p<-—v,

/ If(z) — (Pxf)(z)]dr < cl(z7; - xj-I)*T' £ I+]logzj] if p=-—v,

Tj-1 x;"—" if H > —V.

We will show that (14) holds also for j = 1. Substituting z = nz; and s = oz,

we get

z 1

sup /(s — x)“lf(”+1)(s)|d:v
O<zr<7l

T

= 1 if p<-—-v
<¢y sup /(s—w)“ 1+|logs| if p=-v }ds
o

/
e if pu>-v

] 1 if u <-v

= c2:t:‘l‘+l sup /(a -n)* £ 1+]log(ozi1)) if p=-v »>do

O<n<l
S

(oz1 K" if pu>-v

a3

(14)
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and the estimates (14) for j = 1 are deduced from

1 1

1

sup /(a -n)a"Ydo < /a—"da =
—

o<n<l
3

gy
17

when4>oandv< 1.

Now the estimates of Theorem 2 follow analogously to the ones of Theorem 1.

3. NUMERICAL EXAMPLES

Consider the computation of the integrals

1

(nz)3 ) 7 4/I+:cds— 120"
0

and
1

/2—2O\/E—.
The integrands of the integrals (15) and (16) belong respectively to

Ckl+¢(o,l] and to C*¥1(0,1] for an arbitrary positive integer k and for an

arbitrary ¢ € (0,1). These integrals with the composite quadrature rule (4)

corresponding to Gaussian quadrature with 3 knots and to Simpson’s rule are

calculated using respectively 3N — 2 and 2N values of the integrands. In Table 1

and Table 2 the errors |Ry| of the integrals (15) and (16) and their ratios oy =

|Rn/2/Rn| are presented. For Simpson’s rule 1 = 3 and from the estimates (6) it

follows that for » = 6 in Table 1 and for » = 10 in Table 2 the ratios gy should

be approximately 16, which agrees very well with the actual convergence rate. For

Gaussian quadrature with 3 knots . = 5 and from the estimates (6) it follows that

for » = 8 in Table 1 and for » = 14 in Table 2 the ratio g, should be approximately
64. When r < (u+2)/(2 —v), then approximate values of the integrals converged
somewhat quicker than the estimates (6) guaranteed.

When we used for computing the integral (15) the quadrature rules (11) and (12)
for r = 5 instead of the quadrature rule (4) corresponding to Gaussian quadrature,
then in the first case we got approximate values of the integral with somewhat

greater errors and in the second case with somewhat smaller errors than those

displayed in Table 1. In the other cases presented in Tables 1 and 2 the rules (11)
and also (12) corresponding to Gaussian quadrature gave the approximate values

of the integrals nearly with the same errors as those shown in the tables.

(15)

(16)
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NÕRGALT SINGULAARSETE INTEGRAALIDE LIGIKAUDNE

ARVUTAMINE

Enn TAMME

On vaadeldud norgalt singulaarsete integraalide arvutamist ebaiihtlast vorku

kasutavate liitkvadratuurvalemiteabil. On selgitatud kvadratuurvalemi vea soltu-

vus vorgu ebaiihtlusest ja nédidatud, millise ebaiihtlase vorgu puhul kvadratuur-

valem koondub ndrgalt singulaarse integreeritava funktsiooni korral sama kiiresti

kui sileda funktsiooni korral iihtlasel vorgul. Teoreetilisi tulemusi on kontrollitud

numbrilistes nédidetes, kasutades Gaussi ja Simpsoni kvadratuurvalemeid.
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