
n = N,exp(-BJt) + (A/B) J [1 — exp(-BJ©)] + (n,— N,) + (a —A)Jzt (1)
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In ['] we provided evidence that two-quantum laser coloration of ionic

crystals is paralleled by one-quantum laser discoloration of the samples. This

was revealed by the investigation of the coloration dynamics at different laser

intensities using various uncoloured and preliminarily coloured alkali halide

crystals. It turned out that all features of the experimental results could be

consistently explained supposing that the two-quantum created excitons and/or

electron-hole pairs are partially converted into lattice defects, namely F centres

and complementary V centres. Further, it was shown that the discoloration

occurs mainly via one-quantum photodissociation of the F-complementary V

centres and annihilation of the dissociation products with the F centres. In these

experiments we extracted from the laser beam with a small orifice a tiny central

fraction to achieve a spatially homogeneous irradiation and to improve the

signal-to-noise ratio. It was tempting to visualize the laser coloration/

discoloration interplay in a single illustrative experiment. This is possible if one

shines a laterally inhomogeneous laser beam (as it really is) onto the surface of a

crystal sample.
According to [l], the F centre density n can be expressed as
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(formula (17) in [']). Here N, is the initial density of V centres, A and B are the

empirical constants, J means pulse intensity of the laser radiation, ¢ irradiation

time, n, initial density of F centres, and a is an empirical constant. Neglecting
the minor terms (n, — N,) and (a -A)t, accordingly taking n,~ N,, we have

n = nexp(-BJt) + (A/B) J [1 — exp(-BJ?)].

Thus, according to our model, a prolonged irradiation (# »1/BJ) must result in a

saturation colour density allocation

(e y) = (A/B) J(x, y),

which depends solely on the spatial distribution of laser intensity J(x, y). This

holds both for uncoloured and preliminarily coloured samples. From (2)

dn/dt = BJ (n; —n,) exp (-BJr).

Thus dn/dt > O if n, > n, and dn/dt < O if n, < n,. In other words, the laser light
induces additional coloration if the laser-induced saturation colour density n, at a

given intensity level J exceeds the preliminarily introduced colour density, and

bleaching if it does not reach n,,.

Figure 1 displays a Mathcad-simulated colour map for preliminarily colour-

less (1a) and coloured (1b) crystals. The intensity distribution of the laser beam,
in accordance with the experiment presented in [*], was assumed to be a

Gaussian (see also Fig. 1¢)

J(x, )= J, exp [—(cix* + c)],

where J,, c;, and ¢, are constants.

In our experiment we used, as in [l], an ELI-1 excimer laser (XeCl, 308.5 nm,

~20 ns pulses, ~25 mJ in a pulse, 10 Hz repetition rate) elaborated in Estonia.

The test objects were KBr platelets cleaved out from the ingots melt-grown at

our institute from “specpure” grade raw salt. Preliminary coloration was carried

out with a commercial X-ray unit (W anode, 60 kV, 20 mA, 2 cm from the tube

window, irradiation doses roughly 2 x 10* Gy).
In Fig. lc the intensity distribution (after [*]) in the ELI-1 laser beam

(curve 1) 1s shown together with the colour distribution (2, dots) for a

preliminarily uncoloured sample. The colour profile repeats within the error

limits the Gaussian intensity profile, in accordance with our assumptions. The

colour profile was measured with a 0.04 mm slit with monochromatic light at the

F band maximum (620 nm). A photomultiplier tube FEU-62 was used. Figure 1d

demonstrates the coloration profile for an X-ray precoloured sample. The case

ny <n, was chosen. The picture also crudely corresponds to the laser intensity
distribution: a more intense colour occurs in the middle of the spot and heavy
bleaching at the wings. However, the curve is distinctively flattened as compared
to the Gaussian. Obviously, our simple model only roughly reflects the details of
the coloration/discoloration process. For example, it does not take into account

2)

3)

4)

(5)
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the progressive in-depth decrease in the laser light intensity in the crystal during
irradiation (due to absorption at the V-type centres), diffusion of the mobile

quasiparticles, etc. Unfortunately, exact calculations are mathematically rather

complicated. Nevertheless, we are just attempting to develop an advanced model.

Fig. 1. Computer simulation of the coloration pattern in preliminarily uncoloured (a) and

precoloured (b) crystal samples under the influence of a laser with a Gaussian beam intensity
distribution; (c¢) ELI-1 XeCl-laser beam intensity J (curve 1, line, after [*]) and laser coloration

density xd (2, dots) profiles for a KBr crystal after 10 h laser irradiation at J= 12.7 MW/cm” pulse
intensity; (d) coloration profile for an X-ray precoloured (30 min irradiation) and thereafter

XeCl-laser irradiated (J = 12.7 MW/cm?, 10 h) KBr crystal. The arrow marks the laser beam centre.
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Figure 2 displays a photograph of the crystal whose colour profile is presented
in Fig. Id. The effect of the laser “ring burning”, according to the intensity
distribution in the beam, is distinctively seen. The overall resemblance with the

expectance displayed in Fig. 1b is apparent. As a result, we have shown that the

validity of our concept of laser coloration/discoloration action can be convincingly
visualized in a single unsophisticated experiment, needing only availability of a

proper laser and X-ray facility. Indeed, exclusive laser colouring should not induce

any bleaching, whereas a mere discoloration effect should be maximal at the laser

spot centre.

We acknowledge the financial support of the Estonian Science Foundation,
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Fig. 2. A KBr crystal, preliminarily X-rayed and successively exposed to excimer laser ELI-1

radiation. Note the ring-shaped, the most extensively laser-bleached area. Dark surrounding:
X-coloured unexposedregion.
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