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Abstract. In this article the results of Dedekind and Abel for term product of series are extended to
statistically convergent series. An extension of Leibniz’s test is given and Tauberian theorems are
proved.
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1. DEFINITION AND BACKGROUND

In order to extend the notion of convergence, statistical convergence of
sequences was introduced by Fast [1] and Schoenberg [2]. Later on it was studied
and linked with summability by Fridy [3], Tripathy [4], Connor [5], Rath and
Tripathy [®], Salat [’], Maddox [®], Kolk [?] and many others. Statistical
convergence of series was introduced by Tripathy ['9. In the present article

mainly the term product of series and Tauberian theorems are discussed. The basic
idea depends on the density of a certain subset A of N, the set of natural numbers.

A subset A of N is said to have the density 8(A) if there exists

Loz A
0(A) = lim :

Tl =790

, where A(n) = {k<n:ke A} and |A| denotes the

cardinality of the set A. Clearly finite subsets of N have zero natural density and
8(A°) = 8(N-A) = 1-8(A), whenever either side exists. Throughout this
paper A® denotes the complement of A in N. For a series » a, we write

S, =ajtas+...+a,, ne N.

Definition 1. A series Y a, is said to be statistically convergent to s, written as
stat-lim s, = s, if the sequence of its partial sums (s,) converges statistically to s,

that is, for every € >0, 8({ne N:|s,—s|2¢€}) = 0.
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Definition 2. Let p = (p;) be a bounded sequence of non-negative numbers with
inf p; > 0 and let X be a normed linear space. A sequence x = (x;), where x, € X,

k € N, is called strongly p-Cesaro summable if there exists L € X such that

imn™ Y - L|™= 0.

o s

The space of all strongly p-Cesaro summable X-valued sequences is denoted by

W(p)(X)-

Throughout the paper C denotes the set of all complex numbers; L., ¢, ¢,
denote the spaces of all bounded, statistically convergent, and statistically null
sequences. The forward difference operator A is defined as Ax, = x, —x,,, for
all ke N. Sums without limit mean that the summation is from k=1 to . For
two statistically convergent series Y a, and Y,b,, the term product Y a.b, may
or may not be statistically convergent. This is clear from the following example,
taking b, = a, forall ke N.

2

Example. Let Y a, be defined as a, = (-1)" for n = k* and (n—1) = K,

ke N, and a, = n otherwise..

The following lemmas will be used in establishing the results.

Lemma 1. If Y a, is statistically convergent, then stat-lim a, = 0, but not
conversely.

Lemma 2. (Abel's summation formula). Let 1 <m < n and s,= 0. Then

n n-1

2 akbk = z skAbk+snbn_sm—lbm'

k=m k=m

Lemma 3. (Theorem 3, Fridy [3]). If x=(xy) is a sequence such that stat-

lim x; = L and {kAx;} € (., then lim x; = L.

Lemma 4. (Theorem 5, Fridy D. Let (k;) be an increasing sequence of positive

ki
integers such that lim inf TH > 1 and let (x;) be a corresponding gap sequence:

1

Ax, = 0 if k#k; for i € N; if stat-lim x; = L, thenlim x; = L.
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Lemma 5. (Theorem, Tripathy *D. Let p = (py) be a bounded sequence of non-
negative real numbers such that inf p; > 0. Then

Wiy ) vla(X) 1= E(X) (X)) -

2. MAIN RESULTS

The first proposition follows immediately from Lemma 1.

Proposition 1. If Y a, converges statistically, then Y Aa, converges statistically
to a.

Theorem 1. Let a,, b, € C and let
(2.1) (s,,) be bounded,

22 Y |Aby| be convergent,
(23) (bn) € Z‘O'
Then Y ab, converges statistically to . s;Ab,.

Proof. The statement follows from the equality

n n-1

k=1 k=1

which is true by Lemma 2.

Theorem 2. Let a,, b, € C with (2.2) holding and
(2'5) (S") € w(p)(c) M ﬂ,,(C),

whenever 0 < irl}f P Spr<sup p<eo. Then Y a.b, converges statistically.
: k

Proof. We have forall ne N

n-1
(2.6) bn = b] o 2 Abk'
k=1

n-1

By (2.2) and (2.5) the sequence of numbers » s,Ab, is absolutely convergent.
k=1

Since (s,,) is statistically convergent by Lemma 5 and (b,,) is convergent by (2.6)
and (2.2), (s,b,) is statistically convergent. Thus, by (2.4) Y a,b, is statistically
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convergent as the set of all statistically convergent sequences is a linear space (see
Schoenberg [2]).

Theorem 3. If Y a, is statistically convergent and (na,) € [., then Y a, is
convergent.

Proof. The proof follows from Lemma 3.

The following result is an extension of Leibniz's test for the convergence of
series.

Theorem 4. Let Y a, be an arbitrary term series of reals such that

2.7) for M = {k,: k <k,<k;...}cN,a, = (-1)"'b,,ne N,

(2.8) (b,) is non-increasing, non-negative and lim b, = 0,
(2.9 Y ay is statistically convergent.
ke M*

Then Y a, is statistically convergent.

Proof. The proof follows immediately from the decomposition

zak = 2 ak + Z ak.
k ke M ke M
From the above theorems we get the next two propositions.

Proposition 2. Let Y,a, be a series satisfying the conditions (2.7), (2.8), (2.9),

and (na,) € (. forne M. Then Y a, is convergent.

Proposition 3. Let (k;) be an increasing sequence of positive integers such that

ks
lim inf —'75-1>1 and let a;=0 if k#k; for ie N. If stat-lim s,=L, then

1

lims, = L.
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STATISTILISEST KOONDUVUSEST
Binod Chandra TRIPATHY
Artiklis on Dedekindi ja Abeli tulemused korrutisridade kohta iile kantud

statistilise koonduvuse juhule, on esitatud Leibnizi koonduvustunnuse iiks tildistus
ning toestatud mdned Tauberi teoreemid.
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