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Abstract. An optimization procedure is developed for spherical shells of piecewise constant

thickness. The shells under consideration are simply supported at the edge and subjected to the

uniformly distributed external pressure. Material of the shells obeys the Tresca yield condition.

The problem solved herein consists of the maximization of the load carrying capacity under the

condition that the material volume of the shell is fixed.
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1. INTRODUCTION

Rigid-plastic thin-walled shells have been investigated by several authors

e | Hodge [?] has solved the problems of limit analysis of spherical caps

subjected to the uniformly distributed loading, whereas Mréz and Bing-Ye ["]
studied the case of loading in the form of loads distributed along the edge of a central

hole. Popov [?] solved the same problem in the case of combined loading. In these

studies the yield surface corresponding to the Tresca yield condition is presented in

the form of two hexagons on the planes of moments and membrane forces, and shells

of constant thickness are treated. Sankaranarayanan ['°] introduced a generalized

square yield condition.

Jones and Ich [®] proposed a new approximation of the yield surface which

consists of two diamonds on the planes of bending moments and membrane forces.

In the works mentioned above shells of constant thickness are considered and

the load carrying capacity is established under different assumptions. In [>]
shallow spherical shells of piecewise constant thickness are studied.
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In the present paper spherical caps of piecewise constant thickness are

considered in the case of the material obeying the Tresca yield condition. The aim

of the paper is to maximize the loadcarrying capacity under the given weight of the

shell. Instead of the exact value ofthe limit load, the lower bound is used in the case

of spherical caps with a finitecentral angle.

2. PROBLEM FORMULATION

Let us consider a spherical cap of the radius A subjected to the uniformly
distributed external pressure of intensity P (Fig. 1). The external edge of the shell

is simply supported at ¢ = (3.
The thickness of the shell is assumed to be piecewise constant, e.g.

h:{ hO7 (pE(O,Oz),
hl7 p€ (a713)7

where hg, hi, and « are treated as previously unknown constant parameters.
However, 3 is considered to be a given constant. We are looking forthe design of the

cap for which load carrying capacity attains the maximum value for a fixed weight
of the shell.

Calculating the volume of a body which is located between two spherical
surfaces with radii A — % and A + %, respectively, one can evaluate the weight
(mass) of the cap as

3 3

V =(1-cosa) (3A2hO + %) + (cosa — cos ) <3A2hl + %) .
Here V' = 3M/2mp, where M is the mass of the shell and p is material density

Fig. 1. Shell geometry.

(1)

(2)
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3. GOVERNING EQUATIONS AND BASIC ASSUMPTIONS

For small strains and displacements, the equilibrium equations ofa shell element

have the form [?]

(Ny, sin p)' — No cos p = Ssing,
(N, + Ne + PA)sinp = —(Ssin )/,
(M, sinp)’ — Mg cos p = ASsin.

In (3), N, and Ng stand for the membrane forces, M, and Mg are the moments,

and S stands for the shear force. Here and henceforth primes denote differentiation

with respect to the angle .
The strain rates may be presented as [?]

: i : . 1. .

ép=7lU'=W), ee=7(Ucotp-W),
| | -

sz—fi(U+W')', Ko =—;l—2cot<p(U+W'),
where U and W denote the displacement rates in the meridional and normal

directions, respectively.
The material of the shell is assumed to be rigid-plastic obeying the Tresca

yield condition. The effects of elastic strains, strain hardening, and geometrical
nonlinearity will be neglected in the present paper.

Yield surfaces in the space of generalized stresses N,, Ngo, M,, Mg were

derived for shells of a Tresca material by Hodge [2]. Exact yield surfaces are

quite complicated in both cases associated with solid and sandwich shell walls,

respectively. In applications different simplifications are introduced and exact

solutions of complicated shell problems are quite rare. Hodge [%] suggested “one

and two moment limited interaction” surfaces for materials which obey the Tresca

condition on the plane of principal stresses. Moreover, in the case of small values

of the angle 3 he assumed that for sandwich shells

Ne =O, Mo=M

over the shell. Here M stands for the yield moment. It was shown in [2] that the

assumption (5) leads to a good approximation of the load carrying capacity of the

shell. Following Hodge [?], we assume that (5) holds good over the shell. Note

that (5) corresponds to the ridge of the yield surface associated with ¢ = r (see [2l)
and Mg /My = +(1 — (Ng/Ny)?). This yield regime is widely used in the plastic
analysis of shells of revolution. I

It appears convenient to use the following nondimensional guantities:

no=
NO m,cMpo h » M

1,2 N, ) 1,2
M,
»

h,
> 7

ha )

po >PA S yW j.U
—4A7 p—N*, S—N*, —A, —A,

(3)

(4)

(5)

(6)
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where M, = ogh2/4, N, = ooh., and oy is the yield stress. Here h, stands for

the thickness of the reference shell of constant thickness. >

Making use of thenondimensional variables (6), we may present the equilibrium

equations (3) as

(nlsinp)’ — nacos @ = ssin,
(n 1 + n 2 + p) singp = —(ssinp)’,
k[(m sin @)’ — mg cos @] = s sin p.

The strain rates (4) may be put into the form

Ep =Ü -Ww, Eo=Ücotp-wW,

k,=-klü+w), ko=-kcotp(ü+"),

where
> M*

KG.
,

s

-N M,
Ksov ko

gMt

Boundary conditions for a simply supported spherical cap are

m1(0) = ma(0), m1(B8) =O,
nl(o) = ng(O).

It is evident that in the case of the stepped shell the material of the cap is used

maximally if the moment M, attains its maximum value at ¢ = a. Thus, if h 1 < ho,
one has

my(@) = 1.

Material volume of the shell (2) may be presented as

v = (1 — cosa)(3yo + 4k*y3) + (cos a — cos B)(31 + 4k%~3),

where v = V/A?h,.

4. LOAD CARRYING CAPACITY OF A SPHERICAL CAP OF

CONSTANT THICKNESS

Consider the spherical cap of constant thickness A = dh,. It was shown by
Hodge [?] that for small values of the angle 3 an approximate solution of the posed
problem may be obtained if (5) holds well over the shell. Thus

(7)

(8)

(9)

(10)

(11)

(12)
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Integrating the set (7) and taking (13) into account, and satisfying (10), one

eventually obtains 4

s==L,
2

?

n = g(wcow —1),

my = 62
— 2%(1 — wpcot ).

Substituting mi (8) = 0 in (14) gives

»

2kõ?
P—

1-Bcotß'

The value of the load intensity (15) is a lower bound of the load carrying
capacity, since (15) corresponds to the statically admissible stress distribution (14).
For the solution (15) to be the exact solution, it is necessary that it meets the

kinematic requirements. Making use of (8), (9) and the associated flow law, one

can state that the solution iskinematically admissible for small values of the angle
(. Thus, for small values of (3, (15) presents the exact limit load. In the case of

greater values of the angle 8 the current solution gives the lowerbound for the limit

load.

5. STEPPED SPHERICAL CAP

Consider now the simply supported spherical shell of piecewise constant

thickness (1), whereas nondimensional thicknesses are 7y and ;. In this case,

according to (5) and (6), ny = 0 and

2
—

707 ‘106[0304]7
Mo —: {vf, p € [a, 81.

Substituting (16) in (7) and integrating under the boundary conditions (10), one

easily finds
-

s = —Bcp
2

? .

P
m =s(pcoty-1)

for ¢ € [O, 8] and

2_ 2(1-pcot)m 1 =" 2%

for p € [O, a]. Similarly, for ¢ € [a, (], one obtains

sinedd o »P
— —IO _71)7M= o = i) socow)+slw( 6

(14)

(15)

(16)

(17)

(18)

(19)



265

where the continuity requirement for m; at ¢ = « is taken into account. Satisfying
the boundary condition m;(8) = 0 in (19) leads to the lower bound of the load

carrying capacity of the shell of piecewise constant thickness

i

2k pr pinde )| op—].—lßCOt,B[,Yl—*—Sin,B(,YO ’yl):l

In order to solve the optimization problem, one has to maximize the load

carrying capacity under the condition that the material volume of the shell (12) is

given. Instead of the exact load carrying capacity, the lower bound (20) is used in

the present paper. It is reasonable to assume that the shell material is maximally
stressed if the condition (11) is satisfied. Thus, according to (11) and (18),

1 — acota sina2 2 2 2 2
-- ——— |A+—— e

= O0 1 I—Bcots[l sinfi(o 1)]

Assume that the quantity v in (12) is equal to the nondimensional volume

associated with the uniform thickness v = 1. This conjecture leads to the relation

(I—cos @) (3o +4k2'yš)+(cos a—cos B)(3y1 +4k2fyf') — (I—cos 8)(3+4k2) = 0.

In order to maximize (20) underconstraints (21) and (22), let us introduce the

augmented functional

2k . ! |
Jy =

e[yi sin8+ sino(v§ — 7))]

+2l[(l — cosa) (3yo + 4k2y5) + (cos x — cos B)(3yl + 4k23)

—(1 — cos8)(3+ 4k2)] + 208 - 77 |
1— acota 2. : 2 2

— Smß=Beosd [li sinB + sina(% — 1)])-

Necessary conditions of the minimum of (23)

UL > % G
—äg—o, Õ')'o

—O,
3’)’l

=0

(20)

(21)

(22)

(23)
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may be presented as

o 2
———————————————%_COSl— 11)

+ A 1[sin x(3yo + 4k2y5) — sina(3yl + 4k2*y7)]
sinB — Beos8

Äg o
De ei 2.. ,2

eyg [(C"t x šf%) (7i'sinB —sina(yy —1))
— (1 — acota) - cosa(yd —vi)] =O,

4kyyo sina 2 N
—_— + d 1 - 3+ 12kTM(L -cosa)(3 + 12K%])

1 - acota
> ——— wsi

=0+229 [’yo sinß = Beosh
Yo sma] :

4k
. . 2,2——————(71Bin8 — Y 1 sina) + A 1 (cos@— cos )(3 + 12k°77)

sinf3 — BcosB
1-acota

— 2 : — : = 0.222 [7l +
sin8 P

(71 sin8— 71 sin a)]
The set of algebraic equations (24) must be solved together with (21), (22) with

respect to o, 70, Yl, Al, A2. This has been done numerically with the aid of the

Newton method.

6. DISCUSSION

The results of calculations are presented in Figs. 2 and 3, and in Tables 1 and

2 for several values of the angle 3. Table 1 corresponds to the case k = 0.005,
whereas Table 2 is associated with £ = 0.001. The quantity e in Tables 1 and 2 can

be considered as the economy coefficient defined as

e=2
PO

Here p stands for the lowerbound of the load carrying capacity of the stepped shell,
whereas pg is the limit load of the reference shell of constant thickness. In the latter

casg Vg =9 = L

The calculations carried out show that the lower bound of the load carrying
capacity of the shell can be increased by more than 22% (in the case 8 = /2).
For smaller values of 3, the economy coefficient attains smaller values. However,
the limit load can be increased by more than 15% anyway.

Numerical analysis reveals somewhat unexpectedly that the optimal values of

a, Y, and <; only weakly depend on the geometrical parameter k. For instance,
ifk = 0.005 and 8 = 0.8, then a = 0.64107, 35 = 1.1355, and ; = 0.7431.

However, ifk= 0.001, we have « = 0.6411, 9 = 1.1355, and ~; = 0.7432.

(24)
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Fig. 2. Membrane force.

Fig. 3. Bending moment

lb i | ] e

0.1 0.08056 1.1395 0.7417 1.15345

0.15 0.12086 1.1394 0.7415 1.1537

0.2 0.16112 1.1393 0.7415 1.1540
0.3 0.24156 1.1390 0.7417 1.1550

0.4 0.32188 1.1386 0.7419 1.1564

0.5 0.40201 1.1380 0.7422 1.1583

0.6 0.48195 1.1373 0.7425 1.1606

0.8 0.64107 1.1355 0.7431 1.1668

1.0 0.7991 1.1330 0.7437 1.1754

1.2 0.9559 1.1298 0.7440 1.1871

1.4 1.1116 1.1257 0.7437 1.2028

n/2 1.2442 1.1215 0.7428 1.2205

Table 1

Optimal values of the design parameters k = 0.005
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The distributions of the membrane force n; and the bending moment m; are

presented in Figs. 2 and 3, respectively. Here 8 = 0.2 and & = 0.005. According
to Table 1, = 0.16112, whereas 79 = 1.1393 and ; = 0.7415. Note that at

¢ = « the bending moment m; has the limit value, e.g. m; = 2. Solid lines in

Figs. 2 and 3 correspond to the optimized shell, whereas the dashed lines are due

to the reference shell of constant thickness. It can be seen from Figs. 2 and 3 that

the bending moment and membrane force in the optimized structure exceed those

corresponding to the reference shell of constant thickness.
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ele ] n [e

0.1 0.0814 1.1396 0.7284 > — 1.1533
0.2 0.1611 1.1393 0.7413 1.1541

0.4 0.3219 1.1386 0.7419 1.1565

0.6 0.4820 1.1373 0.7425 1.1606

0.8 0.6411 1.1355 0.7432 1.1660

Table 2

Optimal values ofthe design parametersk = 0.001
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TÜKATI KONSTANTSE PAKSUSEGA PLASTSETE SFÄÄRILISTE
KOORIKUTE OPTIMEERIMINE

Jaan LELLEP‘ja Ernst TUNGEL

On vilja tootatud tiikati konstantse paksusega jdikplastsete sfadriliste koorikute

optimeerimise meetod eeldusel, et koorikule mojub iihtlane vilisrohk ning kooriku

serv on vabalt toetatud. To6os on leitud kooriku optimaalsed parameetrid, mis

vastavad kandevoime maksimumile etteantud massi korral.
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