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Abstract. The linear programming problem is transformed to the quadratic programming
problem —to find the smallest distance. For the solution of this problem the least squares
method is used. The problem is reduced to another one — to find a nonnegative solution of

an overdetermined system of linear equations. The least squares method is recommended for

solving problems with degenerate basis or with ill-conditioned matrix. A test problem with the

Hilbert matrix is solved up to the 220th order, while most applications deal with 4th- to 10th-

order matrices.
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1. INTRODUCTION

Let A be an m x n matrix, b an m-dimensional, and ¢ an n-dimensional vector.

Let us consider the linear programming problem

z =(¢,x) — max,

Ar = ,

z 2> 0.

Let zx be a solution of the system (1), z+ = (c,z%), and z(e) the least squares
solution of the overdetermined system

Ar = ,

ex = c"

r = U

(1)

(2)
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where T' denotes the transpose, € > 0. In Section 4it is proved that z(e) — zx* if

e — 0. Denote D, = (A,eI)T and h = (b, )T, where I is the unit matrix. Then

(2) can be written as

Decx =h,
>0

The problems (2) and (3) are equivalent to the problem

®e(z) = || h— Dez ||> = min,

which after some transformations becomes

Pe(z)/e = (b— Az,b— Az)/e + (¢c,c)/e — 2(c,z) + €(z,2) = min.

Therefore, the solution of the problem (2) in least squares is equivalent to applying
penalty functions and regularization methods to (1). The term €(z,z) in (5)

guarantees the stability of the method and enables us to solve unstable problems
with great accuracy (see Section 3). Anotherway for using least squares is presented
in [l]. Instead of the system (2) there are only m + 1 equations

Ar = b,

E(Cv CB) = €2y,

r 2> 0,

for which the parameter zy > zx is to be chosen, ¢ > 0. However, the least squares
solution of this system is not as precise as that of (2), because the later is found using
a regularization method. In Section 2 a detailed description of the algorithm V'L
to solve (3) is given. It is based on the ()R decomposition of D, which has two

characteristic features (see [2]). First, the order of the active variables corresponding
to the columns of the triangular matrix R is determined by the third step of the

algorithm V'L: the variable x; is activized ifthe angle between the column d; and h

is smallest. Second, if in the solution process of the system with a triangular matrix

R some variable proves to be nonpositive (see, e.g., Example 1, iteration 4), then the

column corresponding to this particular variable is eliminated from the matrix R and

the other columns are transformed again to the triangular form using Givens plane
rotations. The order of the matrix R is equal to the number of the active variables:

on the first step it is 1, on the second step 2, etc. These values are determined on

each step from the triangular system with the matrix R. The algorithm V L is finite,
because on each step the minimum of the function ®,(z) in some subspace is found.

The number of these subspaces is finite (see [2]). A well-known stabilizing system
Ax = b, ez = 0, which is composed for solving an exactly defined system of linear

equations Az = b, corresponds to the system (2).

(3)

(4)

(5)

(6)
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2. DESCRIPTION OF THE ALGORITHM VL

Let us describe the algorithm for finding an approximate solution z(e) to the

problem (1). The vector z(e) by fixed € is found as a least squares solution of

(2) or (3). The matrix D of the system (3) has m 1 rows and n columns, A is

an ml-dimensional vector, m 1 = m + n. Furthermore, five more n-vectors —

¢, z, F,G,IJ and an m-vector u are needed.

Algorithm VL(D, h,c,lJ,z,u, F,G,ml,n,e,el, M).
1. Take for the number of active variables k = 0 and z = 0.

2. Find n-vectors F' and G with the coordinates

F(j) = (d(s),h), G(j) = (d(5),d(5)), 7=1,...m.

3. Determine the following active variable z(jp) by computing

max F*(s)/G(5) = F*(jo)/G(jo) = RE,

where maximum is found for all passive variables for which G(j) > el and

F(j) 20

4. IfRE < €l, then go to step 19.

5. Increase the number of active variables, £ = k + 1, and store the index jo in

the array IJ, IJ(k) = jo.
6. Apply the Householder transformation to the columns d(j) and the right side

h with the vector v = d(jo), taking m 1 + 1 — k for the dimension of these vectors

(see [*l, Ch. 10).
7. Calculate new F(j) = F(j) — d(k,j)h(k), G(j) = G(5) — d*(k, ),

7=
8. Calculate the values of the active variables z; from the triangular system.
9. Take the number of the controlled variable L = k + 1. (During steps 9—-13

positivity of active variables is checked.)
10. LetL = L — 1.

11. ItZ = 0, then go to step 12, or else go to step 13.

12. Ifm > k, then go to step 3, or else go to step 19.

13. If the inequality (j(L)) > 0 holds, where j(L) is the index of the active

variable, then go to step 10.

14. Let z(j(L)) = 0 and delete index j(L) from the array IJ,IJ(i) =

IJ(i+1), i= L,...,k - 1.

15. To delete the column d(j(L)) from the set of active columns, transfer

the matrix which consists of active columns to the triangular form using Givens

rotations. In order to eliminate v(2) in the vector v = (v(1),v(2))T, all two-

dimensional vectors are multiplied by the Givens matrix G, where G(1,1) =

G(2,2) =¢, G(l,2)=s, G(2,1) =—s, ec=v(l)/ sgrt(v(l)? + v(2)?).
16. Find new P(j) = P(j) + d(k,j)h(k), G) = G(j) + d(k, j),

j=1,...,n.
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17. Decrease the number of active variables, k=k — 1.

18. Go to step 8.

19. Check the inequalities | h(7) |< el+€((b,b)+(c,c)) fori = k+1,...,m. If

any of these inequalities does not hold, then the problem has no feasible solutions;

stop.
20. Find the value of the goal function z= (¢, z).
21. If z > M, then the goal function is unbounded; stop.
22. The problem is solved.

Example 1. Let us solve

z(1) +3z(2) +2z(3) =z — max,

T(1) +71(2) +7(3) =3,
2z(1) +3z(3) =6,

% > 0

for e = 0.01 and €1 = 10725

Iteration x(1) x(2) x(3) h

1 1 1 1 3

2 0 3 6

0.01 0 0 1

0 0.01 0 3

0 0 0.01 2

F 15.01* 3.03 21.02

G 5.0001* 1.0001 10.0001 .
x 0 0 0

2 -2.2361 -0.4472 -3.1305 -6.7126

0 -0.8944 0.4473 -0.0027

0 -0.0045 -0.0128 0.9700

0 0.0100 0 3

0 0 0.0100 2

F 0 0.0281* 0.0064

G 0 0.8001* 0.2003

x 3.0019 0 0 -

3 -2.2361 -0.4472 -3.1305 -6.7126

0 0.8945 -0.4471 0.0314

0 0 -0.0150 0.9701

0 0 0.0050 2.9998

0 0 0.0100 2.0000

F 0 0 0.0204*

G 0 0 0.0003

x 2.9949 0.0351 0
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First 2(1), then z(2), and finally z(3) is activized. After applying three times

Householder transformations, we have on the next step z(1) = —84.6 < 0. Delete

the first one from the set of active columns. Rotating the first and the second row,

annihilate the element d(2, 2) according to step 15 of the algorithm, then annihilate

d(3, 3) analogously. The approximate solution z(e) = (0,1.0310, 1.9989)7 differs

little from z* = (0,1,2)7.

It is well known that the solution of the problem (3) satisfies the normal

equations DTDz = DTh,

(5 + €2)z(1) +z(2) +72(3) =ls+,

(1) +(l+ €*)z(2) +z(3) =3+ 3e,
7z(1) +2(2) +(10 + €*)z(3) =2l +2,

the solution of which in least squares z(e) = (0, (9 + 28e + 32 + 3€3)/t,
(18 —€ + 21€% + 2€3) [t} =zx = (0,1,2)T, e >O, t=9+ 112 +¢*. The

cross product matrix DTD is often ill-conditioned and theresult is quite inaccurate.

Remark 1. The main disadvantage of the algorithm V'L is the large amount of

memory capacity needed. One can use it to solve comparatively small unstable

4 —2.2361 --0.4472 -3.1305 —6.7126

0 0.8945 —-0.4471 0.0314

0 0 0.0187 1.0930

0 0 0 2.9816

0 0 0 1.9635

F 0 0 0

G 0 0 0

x —84.6374 29.2411 0.0323

5 1.0000 1.0001 1.000 3.0298

. 2.0000 0 3.0000 5.9967

-0.0125 0 0 1.0556

0 0 0 29816

0 0 0 1.9635

F -0.0132 0 0

G 0.0121 0 0

X 0 1.0310 1.9989

€ x(1) x(2) x(3)

0.1 0 1.29904 1.98811

0.001 0 1.03102 1.99893

0.0001 0 1.00031 1.99999

0.00001 0 1.00003 2.00000



256

problems. For large-size problems the well-known least squares technique should

be used.

Remark 2. If, for x > 0, ux = min(b — Az,b — Az) > 0, the problem (1) has

no feasible solutions. Let k£ be the number of active variables in the least squares
solution z(e) of (2). If the right sides h(k + 1),...,h(m) are close to zero, the

problem is solvable because h(k + 1)? + ... + h(m)? — ux* if ¢ — 0. In step
19 the condition for the approximate solution fits with the results of calculations.

The solvability is determined more surely using the exact algorithm V'RA, where

the function u(z) = (b — Az, b — Az) on the set z > 0 is minimized (see [2]).

Remark 3. Whether the goal function is bounded can be checked by the algorithm
VRA after solving the prpblem Az = b,(e,z) =M, x > 0, where Mis

sufficiently large. According to computing experiments, there seem to be m + 1

active variables in the result (if rank A = m and if the goal function is unbounded)

analogously to the simplex method. Thereby some of these variables and the goal
function depend essentially on ¢, being proportional to 1/e.

Remark 4. A lot of trouble is caused by the degenerate basis. Probably the

algorithm V'L is more suitable to solve such problems, because adisturbed problem
(see Example 1, iteration 3) arises by adding the constraint ez = ¢”. Thechoice of

the weight € is considered in Section 3.

Remark 5. Probably a number of problems can be solved more rapidly if, after

finding a feasible basic solution, one continues with the simplex method. In this

case one can continue by applying the algorithm VRM SIM which uses Givens

rotations and triangular basic matrix insteadof Gaussian elimination (see [*]). More

detailed analysis of this question is not the topic of the present article.

Remark 6. If the optimal solution of the problem (1) is not unique, it may turn out

that z(€) is not a basic solution but some vector with m + 1 positive components.
This vector is not a vertex (see, e.g. Example 2).

Remark 7. During the actual solution process the equality () > 0 held almost

always.

3. NUMERICAL EXPERIMENTS

Determination of the weight € is considered in [?]. Probably the constraint

x > 0 in mathematical programming problems does not influence the choice of €.

In the system (2) equations Az = b must exist first; otherwise one should

rearrange rows in order to achieve stability. Also, the elements of the matrix A

and vector b must be essentially greater than e. However, for too small € and due

to limited accuracy of calculations, a solution z(€) of the system (2) turns out to be

the same as for e = 0. In other words, we get some feasible solution which does
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not depend on the vector c. Besides, the condition number of the system (2) can

converge to infinity if € — 0. As said above, the algorithm V'L is essentially more

precise than the algorithm V' R used to find the least squares solution of (6). For both

algorithms activizing of variables depends on the sign of the innerproduct F'(s) (see

steps 2 and 3). In the algorithm V'L, F'(j) is a linear function of the weight e€; in

VR it is quadratic. In general, using the algorithm VR, the choice of € is made in

a smaller domain than in V'L, and the accuracy of the solution is lower as well.

According to Theorem 1, in the next section the solution of the problem (2),

z(€), converges to the optimum solution which has the smallest norm. As for more

than m + 1 active variables it is difficult to guarantee the stability of the algorithm
VL, then, based on step 12, the number of active variables k is always less than

m + 2 (see Example 2).

Example 2.

(1+t)xz(1) +zx(2) +2(3) +z(d) +z(s) = 4+,
z(1) +z(3) +z(4) +z(6) =

z(1) +z(4) +2(7) =%

z(1) 4z(2) +z(3) +=z(4) = 2 — max

x > 0.

The maximum value of the goal function is zx = 4+(l. In the case of t =

0.00001 and € = 0.0000001 the algorithm V'L found z(e) = (0, 1.0000101,
1.3333333, 1.6666667, 0,0, 0.3333333).

Example 3. Letus consider a linear programming problem with the Hilbert matrix

d(i,j) = V/ +7), h(ü) = W/i +1) + 1/i +2) +... + 1/G + m),
diz,m +1) = 1, dm+i,m+i)=e€ h(m+i) = h(i) +l/(G +1),
i;j = 1,....m; therest of the elements d(i,j) = 0. For e = 0.00001 the

absolute error $ almost does not depend on the range of the system: 6 = 0.012 if

40 < m < 220. For 220 < m the high-speed memory was not sufficient tostore the

matrix D. Well-known programs solve this problem with the Hilbert matrix only
if m isin the interval [4,10]. In both examples el = 10725, All computations
were performed on an IBM-4381 using FORTRAN codes. For all variables double

exactness was used.

4. PROOF OF THE CONVERGENCE

Suppose the p x n matrix E, the p-vector f, the m x n matrix A, and the m-

vector b are given. We shall consider the quadratic programming problem of finding
an n-vector z* so that it minimizes the sum of squares

v = ||f-Ezr|'>min,
Ar = b,

z > 0.

(7)
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where || - || is the Euclidean norm. To solve this problem, let us consider the system

Ar = b

eExr = €[,

x > 0,

where its least squares solution is denoted by z(e),e > 0. In ['] it is proved that

z(€e) — z* if e — 0. Denote by X* the set of optimal solutions of (1). Assume that

X™ is not empty and prove the obvious statement: The linear programming problem
(1) 1s equivalent to finding a feasible solution, the nearest to a sufficiently distant

point tc”, where ¢ is a large positive parameter and 7' denotes the transpose. Let us

denote the optimal solution of the problem

v = ||rz-tc" ?— min,

Ar = b,

r > 0

by % t>0.

Theorem 1. Thereexistsa numberty such thatfor eacht > tg the equality x; = T

holds, where xx is the normal solution of(1), i.e. it is an element ofX* having the

smallest norm.

Transferthe goal function of (9),

—v/t = —(z,2)/t + 2(c, z) — t(c,c) = max.

According to [°] (Theorem 1, Par. 3, Ch. 10), there exists a number ¢, such

that for each ¢ > %, the equality z; = x* holds.

If the problem (1) has no solutions, the algorithm V'L finds approximately a

nonnegative solution of the system Az = b in least squares.

Theorem 2. The solution in leastsquares ofthe system (2) converges to the normal

solution xx of the problem (1),

lim z(e) = 2%, € — 0.

Form an overdetermined system (8) (corresponding to the problem (9))

Ar = &

€L. = etcT,
r > 0,

where ¢t > g (see Theorem 1). The last system is equivalent to the system (2) if

t = 1/e. This is valid for arbitrary e < ¢y = 1/%. If the problem (1) has a unique
optimal solution, then z(e) — z*, € — 0.

(8)

9

(10)
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LINEAARSE PLANEERIMISE ÜLESANDESTABIILSE LAHENDI

LEIDMINE VÄHIMRUUTUDEMEETODIGA

Evald ÜBI

Kisitletav iilesanne taandub iileméédratud lineaarse vorrandisiisteemi mitte-

negatiivse lahendi leidmisele. Selleks on kasutatud vihimruutude meetodit, mis on

stabiilsem kui Gaussi elimineerimisel pohinev simpleksmeetod.
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