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1. INTRODUCTION

It is well known that the multilevel control methods are implemented in two

general steps: decomposition of the original problem into subproblems and

coordination of the local solutions until they constitute the solution of the

original problem. The coordination process is essentially iterative. The

convergence of coordinative iterations is, as a rule, only assumed provided the

solution of original (centralized) problem exists [].
Despite the (assumed) fact of convergence the speed may depend on the

strength of interconnections between subproblems. If there is some freedom in

decomposing the n-dimensional original problem into n-dimensional sub-

problems, then the structure with the best convergence is clearly preferable.
In this paper a measure which enables us to estimate the convergence of the

“state and costate coordination” method [*] is proposed. The measure is a scalar,
the Euclidean norm of a matrix, characterizing the strength of interconnections
between subproblems.

Proc. Estonian Acad. Sci. Phys. Math., 1997, 46, 4, 290-295

https://doi.org/10.3176/phys.math.1997.4.07

https://doi.org/10.3176/phys.math.1997.4.07


291

2. THE PROBLEM ASSOCIATED WITH THE SELECTED TWO-LEVEL

METHOD

Consider the n-dimensional linear discrete-time object

Xk+l = Axy + Buy, xg — given,

which must be controlled by the sequence of unconstrained u;, so that the

weighted sum

1 N-1
J== Z(x,’chk +up Ruy,)

2
k=l

takes the minimal value. Here matrices B, R, and O are diagonal,
R>o, o=o, kdenotes the time step.

The paper aims at decomposion of this centralized problem into two

subproblems of the dimensions n; and n,, so that nj +ny, =n, and solving the

subproblems by the “state and costate coordination” method, using the classical

scheme [*].
Applying the discrete maximum principle, we get the system of two-point

boundary value problems:

Xik+l = AiXik 7GikPik+l +Zi k»

Xi0— given,

Pik = AiPik+l PO 2 Vi,

yin =O,

where

Gix = B;R; Bi

Zik > Aijx]',k,

Yik = A;'ipj,k+l'

Here and henceforth the indices are used in the following sense:

L,j=l,2;i#j;,k=o,l 2,..., N—l; N is the given number of time steps.

If the quantities z;; and y;; are fixed, then we have to do with two

independent subproblems. Solving the given two-point boundary value problem
backward in time, we can finally write:

L

in-1

Ui =—R; Bi’Fi,k[Si,kH(Aixi,k +Zi,k)+gi,k+l]
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where

Fp=(l+ Si,k+lGi,k)_l°
The vector g;; is computed backward in time after every updating of z;; and

Yi,k:

8ik = ATF (Skl2O + Bi,k+l) +Yi

gi,N =O.

Matrices S; ; are control independent and are computed once, also backward in

time:

Sik = A(F, ISik+l4i + Qi

Si,N = O

At the first level of this two-level scheme two independent subproblems with

fixed coordination parameters are solved and the corresponding state and costate

trajectories are obtained. The task of the second level is to calculate new values

of coordination parameters for the use at the first level. The simplest way to

correct the fixed quantities is direct updating:

I+l
_

]
Zik =AjXjk»
[+l

—
AN ]

-Yik =AjiPjk+l-

Here [ denotes the number of coordination iterations.

We must now try to give a quantitative measure which estimates the

convergence of xž to its optimal value. One possible way is to express the

subproblems in the static form and define the (contraction) operator between the

closed-loop state trajectory iterations.

3. CONVERGENCE MEASURE

Suppose / iterations are accomplished and from this point controls keep their

last values whereas only z;, is updated. This special case characterizes the

influence of the interconnection matrices A;; .
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Define the vectors

and matrices

The subsystem state equation

Xik = AiXik-1 + Biiik + Ayixjp

can now be rewritten in the static ferm:

Xi'_"KiUi+Pinj+W/i7

where F; = K;L;;.

We consider X,-l as a function of Xš-"l and get similar expressions for

Xil, Xš-—I,X,-l—z,Xš-—3. Now we can expose the dependence between even state

trajectory iterations. The constant terms cancel:

l yl-2 I-2 yl-4
Xi —Äi =Piiji(Xi -Xi )

The matrix B;P;;, composed of the elements of the state matrix A, has the

key role in the last expression. The measure of closeness of state trajectories may
be characterized by a scalar, the Euclidean norm

P 1 =P -

In a general case we must expose the dependence between the state

trajectories X,-l and Xš-—l from the original optimization problem given in the

static form: minimize

xi’l Biui,l A,-x,-,o IAijxj,O
2

; ; Aixig || AidyXjo

Xl =
ob Ul = ' ,

W, = ' + -

| N N-1

Xi N B;u; N Ai xio) |A — Ajxjo

A; I 0 + 0 4 0 - + 0

K;=| : : p| Lij= AD

AN ANŽ2 . A 0 + A 0
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2

7 =l3 (x; oi% +URY;)
i=l

with respect to U; subject to state equations. Here Q; =ly ®0;,

R =ly ® R;, O indicates direct multiplication of matrices.

Following the classical scheme of static constrained optimization, we get the

necessary conditions for optimality of the corresponding Lagrangian:

X;O; - X+XSPj=O,
UR’ +MK; =O,
KiUi_Xi +PUX] +VVi = 0.,

Next the expression for the costate vector from the second equation is substituted

into the first, costate equation. The result is U; as a function of U; and state X;,

provided K]TI exists:

U; =R "K;P;K;'RiU; - RK,07X,
From the state equation for X;

Uj=K;'(X;- PyX;- W;).
Substitution of U; and U; into the state equation for X; gives the desired result:

Xi::q)inj-l-“/i*,
where

1

D; = [1 e K;QJ (k 5 +P;)
and

* * —l*

Klj —Ki Pl]Kj ,

K = K;R;"K;,

W,-*— constant terms.

Following the steps of the previous special case for p;, we get:

# e and p; = “(I)Uq)flXil — Xil =(Dijq)ji (Xi X; )
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4. EXAMPLE

Let us decompose a 4 X 4 problem into two 2 X 2 subproblems and compare

the three possible structures.

For O=l R=l N-8 and

4122

1 2. 1 4
A=ol

2.3.43

34 2 1

the result is

=O7l b, =o4l for(1,2-34),

p; =0.74, p, =0.43 for (1,3-2,4),

pl 20_58, P 2 =0.23 for (1,4_2,3)

The subsystem with the first and fourth elements of the state vector and the

subsystem with the second and third elements give a clearly preferable

decomposition.

5. CONCLUDING REMARKS

A measure, the Euclidean norm of a matrix, characterizing the strength of

interconnections between the decomposed parts of a controlled object and

between subproblems of the linear-quadrative optimal control, is derived. Both

open-loop and closed-loop measures indicate the same decomposition. This fact

points out the dominant role of interconnection matrices and the possibility for

the use of p; as a preliminary measure of partitioning. Also, the ratio p;/p,
could serve as a kind of measure for the influence of optimal controls.
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