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Abstract. The retarded and advanced Green’s functions for a massless nonconformally-coupled
scalar field in a class of Robertson—Walker space-times are calculated analytically. The results are

applied to the calculation of the Hadamard fundamental solutions in some special cases.
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1. INTRODUCTION

There are many problems in both classical and quantum physics that are

connected with Green’s functions for linear second-order hyperbolic differential

equations. When considering an externalrelativistic gravitational field, one is led

to equations on a curved space-time.
As is known ['], the Huygens principle does not hold, as a rule, in thé case

of a curved space-time. This means that the Green’s function has support inside

the light cone due to the scatter of waves off the background curvatures. As a

result, a single pulse of a source causes corresponding field pulses to appear in

distant space regions followed by subsiding “tails”. This is a classical analogue
of particle creation in a varying gravitational field [*].

The Green’s function approach is closely connected with the Hadamard

fundamental solution which is an important tool for the regularization of the

stress-energy tensor of a quantum field propagating in a curved space-time [*’].
Exact fundamental solutions (Green’s functions), however, have been found for

some rare cases only, such as the Bianchi-type I metric and the de Sitter universe
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[®7]. For most cases only approximate forms of fundamental solutions have been

calculated, mainly by the application of the Hadamard method.

Following the suggestions by Bunch and Davies [*], a scalar field propagating
in a spatially flat Robertson—-Walker (RW) universe is considered in this paper,
with a power-law behaviour of the conformal scale factor for the metric. Such a

metric has been discussed by Ford and Parker [’] in connection with infrared

divergences, and by Bunch and Davies in connection with regularization of the

stress-energy tensor of a scalar quantum field propagating in the RW background

space-times.
In Section 2, the formalism for calculating the Green’s function is presented. A

similar technique was developed by Friedlander [']. In Section 3, this technique is

applied to find the Green’s functions for a massless, nonconformally-coupled
scalar field in RW background space-times. In Section 4, the properties of the

Green’s functions are discussed. Some special cases of the Hadamard fundamental

solutions are evaluated explicitly.

2. FORMALISM FOR THE CALCULATION OF THE

FUNDAMENTAL SOLUTIONS

This paper deals with the fundamental solutions G for a massless scalar field

which satisfies the covariant wave equation

i6(x,y):=(D+(š—+š)R(x))G(x,Y)=õ(X,)'),
where & is a constant. The d’Alembertian has the form

D= gikVin,

where g'k is a metric tensor of the pseudo-Riemannian space M with the

signature (+ —— —) and V;; denotes a covariant derivative. The scalar curvature R

has the same sign as in ['] and õ(x,y) is the Dirac delta distribution in M.

Differentiations of two-point functions always refer to the first argument and

small Latin indices run from 0 to 3.

A general theory of covariant Green’s functions is presented in ["'].
According to these, the retarded and advanced Green’s functions G™ in a causal

domain Q c M (see [']) are given as

(1)

(2)
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The world function o(x, y) equals the square of the geodesic distance between

the points x and y. It is negative for space-like intervals and positive for time-like

ones, satisfying

Vi ViÖ = 46

The transport scalar W(x,y) coincides with the scalarized Van Vleck

determinant and satisfies the transportequation with an additional condition:

(Z(ViG )V;+ (0o -8))W(x,y) =O, Vx,yeQ, W,y =l. (5)

Delta distributions õi(c(x, y)) have supports on the future light cone

C*(y) and on the past one C(y), respectively. The Heaviside functions

Bi(c) have supports in the closures Ji(y)= Ci(y)UDIL (y), where D* (y)

denote the interiors of the cones C* (y), respectively. In the region Di(y) the

function V(x, y) must satisfy the homogeneous differential eguation

LV(x,y)=o

with the characteristic initial condition

PV(x,y):= (2(V'6)V; +( Do - 4)V(x,y)=-LW(x,y), Vxe C*(y).

The Hadamard fundamental solution H(x, y) is a biscalar of the form

1
H(x,y)= š[šW(x,y)+ V(x,y)lnjo|+w(x, )’)),

where w is a biscalar free of singularities, satisfying the equation

Lw= —Gi[fiV(x,y) +LW(x, y)]

and the boundary condition

w(x,y)=o, VxeCl(y).

Next we consider a conformally flat background space-time M with the

metric

ds? = Q%(x)-dS? = Q%(xndx’dx*,

where 1, =diag(l,-1,-1,-1). If Õ(x, y) is a fundamental solution of

4)

(6)

(1)

(8)

(9)

(10)

(11)



£6(x,):= V'V, + Q2(x)- & R&)G(x, y) = Õ(x,3), (12)
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then

G(x,y)= Q(x)Q1(»)G(x,y)

is a fundamental solution of (1). Hereafter “~” labels the quantities referring to

the conformal space-time M. It should be pointed out that the Hadamard

fundamental solutions H and H are also related to each other by (13).
It follows from (3), (5), (6), and (7) that

+
s

1 St o~
5 (AR

G (x,))=7. O 0 (57(õ(x,y))+V(x, )0“(õ(x, y))),

where V(x,y) is the solution of the corresponding Cauchy problem

LV(x,y)=o, xeD*®),

PV:= 2(ViG)V; +4]V(x,y)=—& R(x)Q ?(x), xeC*y).

The world function G(x,y) takes the form

Sty =Nal -V~y=G~ ~r

3. FUNDAMENTAL SOLUTIONS IN THE ROBERTSON-WALKER

SPACE-TIMES

Remarkably, there is an example permitting an exact solution of (1):

Ox)= BZ(xO)Z’Y

where [ and vy are constants. This power-law behaviour presents a solution of the

Einstein’s equation with a vanishing cosmological constant containing matter

with the state equation

p=oop, oa=2-yl3y, y#o,

where p is energy density and p is pressure. Thus, y = —1 corresponds to the

de Sitter space-time, Y = 1 to a radiation-, and y = 2 to a dust-dominated

expansion of the universe. The Minkowski space-time corresponds to y = 0,
which is excluded for (19).

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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The power-law behaviour of €2 leads to

R= 1=Dy)
and

Loti
(x°)

with

K=6E&y(y-1).

The Cauchy problem (15), (16) can be solved by applying the following
ansatz:

~ 1 õ
V(x’y)“—"_f(z), 2=—F7F.

xOyO xOyO

It follows from (15), (16), and (21) that

z(z+4)d—2f+4(z+2)if+(k+2)f=O
dz* dz

together with the initial conditionf0) = —K/4.

Equation (24) has an appropriate solution ['']

F(@)=(z(z+4)V2R I+2/2),

where the constant v is a root of the equzftion

VivV+l)=-K=6E(l-7)Y

and Pvl is the Legendre function, being the same for both roots of (26). Hence,

the two-point function V(x,y) can be expressed in terms of a Legendre

function, or, alternatively, a hypergeometric function F:

a,)=—R[“%]
c(Cc+4x"y") 2x y

VDG +4x%y%V] 5
=ba VV e

(4x y ) c+4x"y

It can be found by means of (14), (18), and (27) that

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Gi‘ (v 1)

2n82<1xOyO )Y {gi(õ) + [G(G +4xO yO"/’7-Pl[v
1+Õ

2x9y° ]õ+ (6 )}
Curiously, the solution (28) is very similar to that of a massive conformally-

coupled scalar field propagating in the de Sitter universe (y = —1). The retarded

and advanced Green’s functions G,ž of a massive conformally-coupled scalar

field satisfy the eguation

(D + šR(x) +m? )G,š(x,y)=B(x,y),

where m? is a constant. It can be easily seen that for the de Sitter space-time

R(x) = 12/ 2= const. Hence, G +(1/6)- R+ m* = G +(1/6) + £*)R with

g*_m2 2

_mßs
12 °

Now Gž can be obtained by substituting y = —1 and (30) to Egs. (26) and (28).

Note, however, that in this case v has guite a different meaning:

2n2v(v+l)=-m“B;.

We note that the regular part w= (1/B 2 (xOyO)Y )w of the Hadamard

fundamental solution (8) can be found using (28) and the integral representation
of the solution of the nonhomogeneous characteristic initial value problem, given
in ['] (see Theorem 5.4.3 therein).

4. PROPERTIES OF THE GREEN’S FUNCTIONS

Some properties of V(x, y) should be pointed out as consequences of (26),
(27), and (28).

1. The Huygens principle is valid (V(x, y) = 0) iff v = 0. Following (26), one

can distinguish two special cases: If & = 0, then v = 0 for each y; if y=o, 1, then

v = 0 for each &. Note that a space-time with y = 1 is a radiation-dominated

Friedmann universe. Actually, this is also an immediate consequence of (15) and

(16), as Lis conformally equivalent to the d’Alembertian of a flat space-time.
2.lnthe case of v=n, n = 1,2, ...,

the function V(x, y) has a rather simple
form, being a polynomial of the order n — 1 with respect to G . Such v occurs if

28(28)

(29)

(30)

(31)
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E e (0, (2/3)n(n+l) and y=l/2(l+/1-2n(n+l)/36) At minimal coupling

(§ =-1/6) one getsy=-n,(n + 1).

For example, if v = 1, then

— =0w=
Y+D ande

= lz(xoy)V(x,y)=
28

This is possible if & & (0, 4/3) and vy =l/2(1£,/1-4/(3)). At the minimal

coupling the case considered corresponds either to the Friedmann dust-

dominated universe or to the de Sitter one. If v =2, then

õ
- ]0 —2_(x%o) A

Vem)=—y
The regular part of the Hadamard fundamental solution takes the form

0.,0
3

-
1 08ve 2 QO. /X +y T

BeOy Gy )is

0,.0

+(r+y)(xo ? —<r+y°)2)lnlš—šyo—+—rm-y

3. In the de Sitter universe, which is conformal to the RW one, the equation
of the massless scalar field (1) corresponds to that of a massive field (29). Mass

there is real (m? =0) only if £<o and ye (0, 1), or if £>o and y¢& (0, 1). In all

other cases the mass is imaginary (m 2 <0).
4. In the case of Yy#o, -1, 1 the following co-ordinate transformation can be

performed:

1

v|
=

xo= — ex —21—350
,(m[s] p[ M ]

A

x“=%[%s)l”f“, 0=12,3,

where m>o is a constant. It turns out that in the limit |[&|— o the wave

equation L®=o transforms to the Klein-Gordon equation of the Minkowski

space

(32)

(33)

(34)

(35)
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(2)-(2))-] o=
where € = £l. It can be verified that in case of §- — and ye (0, 1), or,

alternatively, if£— oo and y¢ (0, 1), then the following identities hold:

m
=

lim V=——2_J;(m+
b\ - 2

(),
3

õ=(x9-7% - Y @ -3%)%,
a=l

where Ji(x) denotes the first-order Bessel function. This result corresponds to a

real mass (€ = 1) in the Klein—Gordon equation (36).
If either§- —< andy ¢ (0, 1) or §— = and Y€ (0, 1), then

JimV= —ZL"EI(mV5),

where [;(x) is the first-order modified Bessel function and (38) corresponds to a

field with imaginary mass (€ = —1).
It should be pointed out that an analogous limit procedure can also be carried

out in the de Sitter space-time (y=-1).
We have seen that, by the application of the above-mentioned co-ordinate

transformation and the unrestricted growth of the coupling constant &, an

initially massless scalar field in the RW universe can obtain mass in the

corresponding asymptotic Minkowski space. This is a conclusion that might be

an object of further interpretations.
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SKALAARVÄLJA GREENI FUNKTSIOONID TEATUD KLASSI

ROBERTSONI-WALKERI AEGRUUMIDE KORRAL

Romi MANKIN ja Ain AINSAAR

Spetsiaalse klassi Robertsoni—-Walkeri aegruumide foonil on leitud mitte-

konformse seosega massita skalaarvilja retardeeritud ja avansseeritud Greeni

funktsioonid. Erijuhtudel on tulemusi rakendatud Hadamardi elementaar-

lahendite saamiseks.


	b10720984-1997-4 no. 4 01.10.1997
	Chapter
	Untitled

	PHYSICS. MATHEMATICS FÜÜSIKA. MATEMAATIKA
	CONTENTS
	AN EMBEDDING THEOREM FOR FINITE GROUPS
	LÕPLIKE RÜHMADE SISESTUSTEOREEM

	TWO-GRID METHOD FOR THE SOLUTION OF WEAKLY SINGULAR INTEGRAL EQUATIONS BY PIECEWISE POLYNOMIAL APPROXIMATION
	KAHEVÕRGUMEETOD NÕRGALT SINGULAARSETE INTEGRAALVÕRRANDITE LAHENDAMISEKS TÜKITI POLÜNOMIAALSE APROKSIMATSIOONI ABIL

	MODEL MATCHING PROBLEM FOR NONLINEAR RECURSIVE SYSTEMS
	MITTELINEAARSETE REKURSIIVSETE SÜSTEEMIDE MUDELIGA SOBITAMISE ÜLESANNE

	ON SMOOTHING PROBLEMS WITH WEIGHTS AND OBSTACLES
	KAALUDEGA JA TOKETEGA SILUMISULESANNETEST

	FLUORESCENCE EXCITATION SPECTRA OF SINGLE IMPURITY MOLECULES OF TERRYLENE IN n-DECANE
	Fig. 1. The fluorescence excitation spectrum of terrylene (molecular structure presented in the insert) in n-decane at 1.7 K. Sample was about 3 um thick, excitation intensity 0.1 W/cm*. Zero laser detuning corresponds to A = 576.0 nm (v = 17 361.11 cm™). Laser scanning rate 10 MHz/s; signal collection 1 s per point. Spectral resolution is 10 MHz. Sharp peaks correspond to ZPLs of the S;«S, transition of individual terrylene molecules.
	Fig. 2. Fluorescence excitation spectra for a thin (~1 wm) sample of Tr-C;, at 1.7 K. Solid lines represent two successive scans of the same spectral interval with a delay of about 10 min; spectral resolution is 2 MHz. Zero laser detuning corresponds to 17 361.34 cm™ (A =575.992 nm). Excitation intensity was 1 W/cm?; laser scanning rate 10 MHz/s; signal collection 0.2 s per point. The spectrum of scan 2 is shifted in vertical direction for 1000 units. A single zero-phonon line (ZPL) of a stable terrylene molecule is present in both scans. Dashed lines represent the Lorentzian least-squares fits for both spectra with FWHM of 40 and 24 MHz for scans 1 and 2, respectively. Shift of the central frequency of the spectral line is 50 MHz and does not exceed the specified maximum error (60 MHz) of the laser spectrometer in fixing the preset absolute laser frequency before starting a scan. ZPL in scan 2 has a larger amplitude due to a change in the polarization of the excitation: E-vector of the linearly polarized laser light was turned for 45° to optimize the excitation conditions for the molecule under study.
	TERRÜLEENI UHE LISANDIMOLEKULI FLUORESTSENTSI ERGASTUSSPEKTRID n-DEKAANIS

	GREEN’S FUNCTIONS FOR A SCALAR FIELD IN A CLASS OF ROBERTSON-WALKER SPACE-TIMES
	SKALAARVÄLJA GREENI FUNKTSIOONID TEATUD KLASSI ROBERTSONI-WALKERI AEGRUUMIDE KORRAL
	SHORT COMMUNICATIONS


	SUBSYSTEM FORMATION IN THE TWO-LEVEL CONTROL SCHEME
	Untitled
	Untitled
	CHRONICLE
	Untitled
	Untitled
	Harald KERES 85
	Untitled
	INSTRUCTIONS TO AUTHORS
	Untitled

	CONTENTS OF VOLUME 46




	Illustrations
	Untitled
	Fig. 1. The fluorescence excitation spectrum of terrylene (molecular structure presented in the insert) in n-decane at 1.7 K. Sample was about 3 um thick, excitation intensity 0.1 W/cm*. Zero laser detuning corresponds to A = 576.0 nm (v = 17 361.11 cm™). Laser scanning rate 10 MHz/s; signal collection 1 s per point. Spectral resolution is 10 MHz. Sharp peaks correspond to ZPLs of the S;«S, transition of individual terrylene molecules.
	Fig. 2. Fluorescence excitation spectra for a thin (~1 wm) sample of Tr-C;, at 1.7 K. Solid lines represent two successive scans of the same spectral interval with a delay of about 10 min; spectral resolution is 2 MHz. Zero laser detuning corresponds to 17 361.34 cm™ (A =575.992 nm). Excitation intensity was 1 W/cm?; laser scanning rate 10 MHz/s; signal collection 0.2 s per point. The spectrum of scan 2 is shifted in vertical direction for 1000 units. A single zero-phonon line (ZPL) of a stable terrylene molecule is present in both scans. Dashed lines represent the Lorentzian least-squares fits for both spectra with FWHM of 40 and 24 MHz for scans 1 and 2, respectively. Shift of the central frequency of the spectral line is 50 MHz and does not exceed the specified maximum error (60 MHz) of the laser spectrometer in fixing the preset absolute laser frequency before starting a scan. ZPL in scan 2 has a larger amplitude due to a change in the polarization of the excitation: E-vector of the linearly polarized laser light was turned for 45° to optimize the excitation conditions for the molecule under study.
	Untitled
	Untitled
	Untitled

	Tables
	Untitled
	Untitled
	Untitled




