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Abstract. High spectral resolution and good quality (signal-to-noise ratio up to 15) spectra of
single impurity molecules are reported for terrylene in a new Shpol’skii matrix n-decane at 1.7 K.
Main attention is paid to the differences in measured single molecule linewidths. They differ not
only for different impurity molecules, but also for the same molecule in different measurements.
Linewidths smaller than the natural linewidth known for terrylene in a bulk polyethylene sample
are also reported.
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1. INTRODUCTION

Single impurity molecule spectroscopy (SMS) is a novel promising field of
laser spectroscopy of molecules embedded in solid matrices (see ['] and review
articles [2_5 ], and references therein). The foundation stone of SMS (as well as of
the high resolution spectral hole burning) is the purely electronic zero-phonon
line (ZPL) — the optical analogue of the Mossbauer y-resonance ZPL [*®]. For
quite a number of molecules at low temperatures (about 4 K and below) the peak
absorption cross section of ZPL reaches 101°-10"" cm? ie., exceeds the
geometrical size of the molecule by a factor of up to 10° [’].

Until now SMS for about 20 host-guest systems has been performed and
every new system in the SMS club is welcome. We report on high resolution
spectra of a single impurity molecule for terrylene in a new Shpol’skii matrix
['0‘]2] n-decane (Tr-Cy,). Shpol’skii matrixes already successfully used in SMS

experiments are n-hexadecane, n-dodecane, and n-nonane ['3"'7]. Single molecule
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spectra of terrylene were studied in n-hexadecane ['*', lately they were also

reported in n-dodecane ['"]. In ['®], n-decane is found to form an optimal n-alkane
matrix for terrylene.

High quality single molecule spectra for Tr-C;, have been recorded, for the
best ZPLs the signal-to-noise ratio (SNR) is up to 15 (see Fig. 1). The main
attention is paid to the differences in measured linewidths. They differ not only
for molecules in different impurity sites, but also for the same molecule in
different measurements (separated by time intervals of about 1000 s).

2. EXPERIMENTAL

An optical assembly for fluorescence excitation SMS experiments was
designed to fit the chamber of our optical immersion helium cryostat. Main parts
of the assembly are the small 12.7 mm focal length lens for focusing the
excitation laser beam on the sample and the parabolic mirror for collection of the
fluorescence. The design is in principle similar to that described in ['°] with
some minor differences. In more detail it will be described elsewhere.

The Tr-C,, solution (concentration about 107 mol-1"" as calculated from the
optical density [*]) was prepared by dissolving a very small amount of solid
terrylene in liquid n-decane (Fluka) at room temperature. Terrylene was kindly
provided by Prof. U. P. Wild, ETH Ziirich. A small drop of the solution was
placed between two 0.3 mm thick fused silica plates. It formed a thin film due to
the capillary forces. In some cases a spacer ring was used to get a thicker sample.
The thickness of the sample was estimated to be between 1 and 25 pm in our
series of experiments. The plates with the Tr-C;o solution were mounted into the
optical assembly at the joint focus of the focusing lens and the collection
paraboloid. In case of 1 um thick sample, about 1000 terrylene molecules are
expected to reside in the excited volume (estimated laser beam diameter in the
focus is about 5 pm). The whole assembly was inserted into the cryostat, the
sample was quenched to liquid helium temperature in about 3 min. The frozen
solution mostly formed an invisible transparent film, probably a single crystal.
All the experiments were performed in pumped superfluid helium at 1.7 K.

A single frequency ring laser CR-699-29 Autoscan with Rh6G dye was used
as a source of excitation light with frequency jitter of about 1 MHz. The amplitude
of the laser output was stabilized and controlled by an electrooptical modulator
CA307 (Coherent) in the range of sample illumination (P) 0.1-4 W/en’. Linearly
polarized light with controllable orientation of the E-vector (prismatic
polarization rotator SP-310-21 used) was applied for the excitation. Only one
laser frequency scan was used when recording every single fluorescence
excitation spectrum to avoid broadening of spectral features due to the limited
accuracy in the positioning of the absolute laser frequency by the laser
spectrometer before starting every successive scan. The accuracy of the
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frequency scale during a single scan was provided by the CR-699-29 Autoscan
construction and was defined by the long-term drift of the laser frequency (about
100 MHz per hour). Signals of the two laser wavemeter etalons were
simultaneously monitored to reveal possible laser mode-hopes during the scans.

An optical setup applied for the collection and registration of the fluorescence
signal was very similar to that described in [®]. A red-pass filter used was a
combination of two dielectric coating filters and an absorption filter OS-14 in
between. Sandwich design allowed us to minimize the fluorescence of the filter;
transmission was over 15% for A over 605 nm.

3. RESULTS

Low resolution fluorescence excitation spectra were measured for thick
Tr-Cyo samples; these spectra revealed the site structure similar to that reported in
['®]. Two stronger Shpol’skii sites, B site, centred at 17 361 cm” (A =576 nm), and
A site with the maximum at 17 602 cm™ (A = 568 nm), as well as a weak C site at
17 409 cm™ (A = 574.4 nm), were observed. Site B has a symmetric band shape
with full width at half maximum (FWHM) about 14 cm™. Band at 568 nm is
broader (FWHM =25 cm™) and has a strong asymmetry, apparently due to the
spectral overlap of the A site with the 245cm™ terrylene vibration band
corresponding to the B site ['®]. Site C is very weak and could only be observed for
a ~25 um thick sample (FWHM about 14 cm™). Even in spectra with the resolution
of only 1 GHz considerable statistical fine structure was observed.

Fluorescence excitation spectra with the resolution of 10 MHz were recorded
for different wavelengths, common excitation intensity (P) was about 1 W/cm®.
Narrow lines are present in the spectra, they are mostly concentrated at
wavelengths in the proximity of A and B Shpol’skii sites, but can be found
everywhere in the spectral interval between 566 and 578 nm. A broad
distribution of linewidths is observed, with the most common values between 40
and 50 MHz FWHM, in a good agreement with the lifetime-limited linewidth of
42 MHz determined for a bulk sample of terrylene-doped polyethylene ["*]. We
attribute the narrow lines observed to ZPLs of single terrylene molecules. An
excitation spectrum with good SNR of single molecule lines, recorded for a thin
Tr-C,o sample near the centre of the B site, is shown in Fig. 1.

To determine single molecule homogeneous linewidths (I';) more precisely,
fluorescence excitation spectra with the resolution of 1 or 2 MHz were recorded.
In repeated scans over the same spectral region, spectral jumps of single
molecule lines were often observed; the behaviour seems to be similar to that
reported for terrylene in n-hexadecane ['’]. Stable lines were selected to enable
recording of their contours during several laser scans. We report here on the
results of monitoring a single molecule line with a rather stable spectral position
during about 2.5 h.
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Fig. 1. The fluorescence excitation spectrum of terrylene (molecular structure presented in the
insert) in n-decane at 1.7 K. Sample was about 3 um thick, excitation intensity 0.1 W/cm?. Zero
laser detuning corresponds to A = 576.0 nm (v = 17 361.11 cm™). Laser scanning rate 10 MHz/s;
signal collection 1 s per point. Spectral resolution is 10 MHz. Sharp peaks correspond to ZPLs of
the S;«-S, transition of individual terrylene molecules.

Measurements were performed near the centre of the B site where we
expected to find more stable single molecule lines. Only about 10 clear peaks
were observed in a 10 GHz scan — we estimate the thickness of our sample to be
between 1 and 3 pm. Sixteen spectra were recorded with time intervals of about
10 min between the scans. Intensity and polarization of the exciting light were
changed from scan to scan to optimize these parameters for the selected terrylene
molecule. Spectra No. 11 and 12 are presented in Fig. 2. The spectra were fitted
with the Lorentzian curve superimposed on a constant background; in further
discussion we will mean the respective parameters of this curve when talking
about amplitude, linewidth (FWHM), or central frequency of the spectral line.

We found that the amplitude of the line changes nearly linearly with P in the
range between 0.1 and 1 W/em® with noticeable saturation at higher P. Still, we found
that the linewidth I';, changes between 24 and 42 MHz in the same range of P without
any remarkable correlation with the actual P value. In fact, I', is in several cases
considerably smaller than the lifetime-limited linewidth of 42 MHz as determined for
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a bulk sample of terrylene-doped polyethylene ["*]. Figure 2 shows an example of
two spectra recorded for the same P and yielding remarkably different I';.
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Fig. 2. Fluorescence excitation spectra for a thin (~1 um) sample of Tr-C,, at 1.7 K. Solid lines
represent two successive scans of the same spectral interval with a delay of about 10 min; spectral
resolution is 2 MHz. Zero laser detuning corresponds to 17 361.34 cm™ (A =575.992 nm).
Excitation intensity was 1 W/cm?; laser scanning rate 10 MHz/s; signal collection 0.2 s per point.
The spectrum of scan 2 is shifted in vertical direction for 1000 units. A single zero-phonon line
(ZPL) of a stable terrylene molecule is present in both scans. Dashed lines represent the Lorentzian
least-squares fits for both spectra with FWHM of 40 and 24 MHz for scans 1 and 2, respectively.
Shift of the central frequency of the spectral line is 50 MHz and does not exceed the specified
maximum error (60 MHz) of the laser spectrometer in fixing the preset absolute laser frequency
before starting a scan. ZPL in scan 2 has a larger amplitude due to a change in the polarization of
the excitation: E-vector of the linearly polarized laser light was turned for 45° to optimize the
excitation conditions for the molecule under study.

4. DISCUSSION

The fluorescence excitation spectrum (Fig. 1) looks like a typical SMS one.
Quite a good SNR is achieved — 15:1 for the most intense peak. Great
differences in the peak and integrated intensities of the ZPLs of different
molecules are to be understood as the result of different excitation intensities at
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different sites of the spot illuminated by the laser and also by different angles
between the electric vector of the exciting light and the dipole moment of the
transition. We will further discuss the appearance of different single molecule
linewidths in our fluorescence excitation spectra.

Considerably different linewidths I, for different molecules have been
reported earlier for different SMS systems ['*"'® 2], including terrylene in
different hosts ['*%*] and different impurities in Shpol’skii matrixes [*“].
Broadening of some single molecule lines can be explained by spectral diffusion
or dephasing due to different environments. Single molecule lines, narrower than
the lifetime-determined natural linewidth (measured for bulk samples), have so
far been reported for pentacene in p-terphenyl single crystal [*°] and for
dibenzanthanthrene in Shpol’skii matrix n-hexadecane [16]; these observations
are still to be explained.

A new and interesting point (compared to [*]) is that we observed
considerably different linewidths I'y, for the same impurity molecule measured at
different time moments (see sample spectra in Fig. 2).

The measurement time of the contour of one ZPL is less than 10 s, and the
drift of the laser frequency is estimated to be less than 1 MHz per 10 s. If so, the
long-term drift of the laser frequency cannot be the main reason for linewidth
differences.

While different environments can easily cause different linewidths for
different impurity molecules, then different results for the same molecule require
more sophisticated understanding and interpretation. The specific point is that
the absolute frequency (the spectral position) of the ZPL did not change more
than 60 MHz (the precision of our laser wavemeter) in the course of measure-
ments. (Recall that the transition frequency of ZPL is usually much more
sensitive than I'y, — this is in fact the source of inhomogeneous broadening.)

One possible way to understand the situation is to take the structure of the
electromagnetic field at the site of the impurity into account. Because of the
matrix, the density of electromagnetic modes differs from that for the free
electromagnetic field. For an optically inhomogeneous solid the differences can
be drastic, especially if the inhomogeneities are of the size of the wavelength. To
some extent this is the case for quite a number of SMS systems, including the
Shpol’skii systems.

Changes in the matrix far away from the molecule during the time between
measurements (e.g., caused by a two-level system) can easily shift the transition
frequency of the molecule for some tens of MHz. We cannot measure such small
shifts reliably due to limited precision of the laser wavemeter. But these shifts
can still be large enough to change the number of electromagnetic modes in
resonance with the frequency of the electronic transition and, consequently (if
the density is far from being constant), the spontaneous emission lifetime and its
contribution to I'. The latter can both increase or decrease. More detailed
discussion of linewidth will be published elsewhere.
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TERRULEENI UHE LISANDIMOLEKULI FLUORESTSENTSI
ERGASTUSSPEKTRID rn-DEKAANIS

Olavi OLLIKAINEN, Viktor PALM ja Karl REBANE

Terriileeni iihe lisandimolekuli korge lahutusega spektrid on registreeritud
Spolski maatriksis (n-dekaanis) temperatuuril 1,7 K. Parimate joonte puhul on
signaali ja miira suhe kuni 15:1. Pohitdhelepanu all on lisandi foononvabade
joonte laiuse erinevus. Lisandimolekuli joone laius ei tule erinev mitte iiksnes
erinevate molekulide korral, vaid ka tihesama molekuli korduval m66tmisel. On
leitud joonelaiusi, mis on viiksemad terriileeni lisanditehulga ergastatud eluea

- mOotmistel médratutest.
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