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Abstract. A system connecting weights and deviations of the solution from given values

in multivariate smoothing problems is established. The system contains a symmetric regular
matrix as free parameter. Certain properties of solvability are studied.
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1. INTRODUCTION

The minimization of a functional containing an integral part and weighted
deviations of an unknown function from given data is a problem which possesses

a unique solution in the form of a natural spline. Actual finding of this spline means

the solution of a linear system. The minimization problem of the integral part of

an unknown function satisfying certain obstacle conditions has also a natural spline
as the solution but, to our mind, there is not yet satisfactory algorithm for finding
this spline. For example, the convergence of coordinatewise descent and penalty
methods is not known. An interesting method of adding—removing knots in the

interpolation problem is described in [l] (pp. 68—69), but the presented proof of its

finiteness isbased on a false lemma (Lemma 10.3 in [']). We see that for a problem
with obstacles there is an equivalent problem with weights and below we describe

the system connecting the weights and deviations in the corresponding problems.
In the one-variable case in [2] an attempt is made to solve the smoothing problem

with obstacles by using another problem with weights. A system containing weights
and deviations is established, but its efficiency is shown when there are obstacles

only in one knot.
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2. NOTATION AND PRELIMINARIES

For given integers r and n, with 2r > n > 1, we denote by G the fundamental

solution of the operator A", where A is the n-dimensional Laplace operator.
It is known that for n odd G(X) = c,;||X||*™™ and for n even G(X) =

cnr||X ||2"~™ In|| X|| with some constants ¢, > 0 and ||X|| = (27 +...+22)1/2.
Let us denote by Lg) (IR™) the space of functions defined on IR™ having all partial
(distributional) derivatives of order 7 in Lo(IR"). Put

fZ'f_.—{ — al =\/T!D
-

a
T

whereo= (a1,...,0p), @; >O, a! = a1!... o), and || = a 1 +. ..+ a,. Thus

T: Lg)(Bn) — Lo(IR™) X
...

x Ly(lß™) with the number of components in the

product as far as there are different derivatives of order 7. We also need the product

(Tf,Tg) = >ri
et

a! /Da
J

fD%dX
» f19-€ LyR)

and the corresponding seminorm ||T'f|| = (T'f,Tf)Y/?. Let P,_; be the space
of all polynomials of order < 7 — 1 on IR" and p = dimP,_;. We see that

KerT = Prl. .
Given a finite number of points X; € IR", 7 € I, a function

S(X = + ž — XER

—

i)7 )
with P € P,_; and

> hO(Xi) =0 VO € Prl
I€l

:

is called the natural spline. It is known that any natural spline belongs to Lgr) G
Furthermore, for all f € Lg) (IR™) and any natural spline S it holds

(TS,Tf) = (-1)' > df(Xi).
I€l

In more detail about natural splines we refer the reader to [l], in the one-dimensional

case to [39].
We suppose here and in the next section that the zero-valued interpolation

problem with polynomials from P,_;in the knots X;, i € I, possesses a unique
solution, i.e., P € Pr-1, P(Xi) = 0, ? € JZ, implies that P = 0. Then for given
data z;, ? € I, there is a unique natural spline S satisfying S(X;) = z;, i € I.

We use sometimes the notation |l| for the number of elements in an index set J.

(1)

(2)

(3)
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3. SMOOTHING PROBLEMS WITH WEIGHTS

Let us consider the minimization problem

2(X))
inf <||Tf||2+§ j—————wie

ch

where Ko = {f € LS;)(JRn)\ f(Xi)=2z,i€l}, LhuL=landl,Nnl =O,

with given data z;, ? € I, and weights w; > 0, ¢« € I;. We call it the smoothing
problem with weights.

Proposition 1. There exists only one natural spline S satisfying

(—l)Tdi(S)wi+S(Xi) = ži, el
S(Xi) = ži 2€ 15,

and this spline is the unique solution of the smoothing problem with weights.

Proof. If |l| = m, then there are m-+p coefficients to determine in therepresentation
(1) of a natural spline. The conditions (4) with (2) give also m +p linear equations.
We show that the corresponding homogeneous system has only trivial solution.

Suppose Sy is a natural spline such that |

(—-l)rdi(SO)wi-l-So(Xi) = 0,2€l,

So(XZ) = 0, 2?€.

Then, from (3) with $ = f = So, we obtain

0 -
< (TBO, TSy) = (_l)rzdi(SO)S (X

i€l

;Z)

= —(-1)")"wid?(So),
I€l

which gives d;(Sp) = 0, i € 11. We see that So(X;) =O, i € I, therefore Sy = 0.

Let Sbe the natural spline satisfying (4). Each element in K may be

represented in the form S+h, whereh € Lgr) (IR™) and h(X;) = 0, i € Iy. Denote

by F' the functional to minimize in the smoothing problem. Then, using also (3), we

have

.N
—

2

F(S—l—h) — llT(S+h)||2+ZlS(XZ)—*-h(XZ) zzl
. W;i
I€l

= |TSI* +2(TS,Th) + |lTh]|?

IS(Xi) — zi|? (S(Xi) — zi)h(Xi) A(Xi)|*
,z

wWi
+? z

Wi
+ z

W;i
I€l I€l €)

(4)
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= F(S) 42> (Iras) +
—

:

>
) h(X;)

I€l
Wi |

Hence, according to (4), we see that F'(S + h) > F(S). Moreover, F(S + h) =

F(S) yields ||Th|| = 0, h(X;) = 0, i € I, and this with h(X;) = 0, i € Iy,

gives h = 0, which completes the proof.

4. SMOOTHINGPROBLEMS WITH OBSTACLES

Given X;, z;, 1 € I,andg; > 0, 1 € I; C I, let us pose the problem

inf ||Tf]|%,flenKE” il

with K. = {f € L{(R?) | f(X:) = z, i € 10, |f(Xs) = 7| < &3, 6 € I)

Iy = I\I;. We consider also the problem

inf=||F 7,[t IS

where Ko = {f € LY (R™) l fF(Xi) = z, 1 € L, 4i < f(Xi) < Bi, i € 1)
and a; < Bi, 1 € L. Here a; = —oo or 3; = oo for some ¢ is not excluded,
in this case the corresponding condition in K,3 must be read as f(X;) < 8i or

f(X;) > a;. We call (5) and (6) the smoothing problems with obstacles.

It is known ([l], pp. 64—67) that the problem (6) has a solution which is a natural

spline of the form (1). We assume here and in the sequel the uniqueness of the

solution. For this it is sufficient that the zero-valued interpolation problem in P,_;
with knots in Iy has only trivial solution but, in general, such a condition is too

restrictive.

Clearly, the problem (5) is a special case of (6), we have only to take a; = z;—¢;

and 3; = z; + €;, © € I;. Conversely, if S is the solution of (6), set, for instance,

Zi = S(Xi), iE€EDD, % = (ai + ,3,')/2, E; = (,3, = ai)/2, 1 € I (if, for instance,

Bi = 00, let ; > 0 be such that S(X;) < a; + 2¢;, then put 2; = o; + €;), and we

see that there is a problem (5) having the same (unique) solution as (6). Thus, both

stated smoothing problems with obstacles are equivalent to each other.

Given a problem (5), it is natural to ask whether there is a smoothing problem
with weights having the same solution. Of course, we do not allow the change
of z;, Iy, and I; as given data. Our purpose is to determine suitable weights
w;, © € I, using €;, 1 € 11. We obtain an answer to the question from an internal

(5)

(6)
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characterization of the solution of the problem (6) ([l], p. 66): a natural spline S of

the form (1) such that S € K,z is the solution of the problem (6) if and only if in

the knots of I; the spline S satisfies the conditions

di= 0, FO =a <S(X) <bi

(—l)yd; >O, & S(Xi) =o,

(-1)7d; <O, f S(Xi) = 8..

It may happen that, for the solution S of (5), there is an index 2 € I; such that

S(X;) # z; and |S(X;) — zi| < €, therefore d; = 0. We see that in this case the

equalities (4) cannot be satisfied for any weights.

5. CONNECTION BETWEEN DEVIATIONS AND WEIGHTS IN

SMOOTHING PROBLEMS

We saw in the preceding section that the smoothing problems with weights and

obstacles having the same given dataz;, Iy, and /; are not, in general, equivalent.
Let us consider the problem (5) possessing a unique solution S such that its

coefficients in the representation (1) satisfy d; # 0, ¢« € I;. Likewise we

assume that in the initial problem the knots in I, corresponding to the coefficients

d; =O, ¢ € I, are already removed. It is clear that after this removal of knots

the new and initial problems have the same solution. In this case we know that

S(X;) # zi, i € I. Thus, taking

Zži — S(Xi), LN) A
we see that (4) holds and S is the solution of an equivalent smoothing problem with

weights. However, the question of how to actually find the weights remains open

because S and d; are unknown.

The uniqueness of the solution of (5) or (6) always implies that the zero-valued

interpolation problem in P,_; with knots in I has only trivial solution. Indeed,

supposing the uniqueness of the solution (denote it by .S), if there is a polynomial
P #O,P(X;) = 0,9 €I, wegetthatS+ P'e K, or'S +P € Kag and

|T(S + P)|| = ||T'S||, which contradicts to the uniqueness of the solution of (5)
or (6).

On the other hand, if the zero-valued interpolation problem in P,_; with knots

in I has only trivial solution and the problem (5) or (6) has a solution S with

d;(S) # 0, i € I, then there is no other solution of (5) or (6). Let us prove it.

Suppose f € K. or f € K,z is a solution of (5) or (6). Then

(7)
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Tfl*— IITSI?

= ::Tf—TS||2+2(TS,Tf—TS)
= JIT(f-S))I +2Z(—l)sz-(3)(

2

F(Xi) — S(Xi)).

The straightforward control, using (7), shows that the sum term here is > 0 which

really gives f — S = P € P,_l, P(X;) = 0, 7 € I;. Taking also P(X;) =O,
i+ € Iy (resulting from f,S € K, or f,S € K, g) into account, we conclude that

P = 0. Thus, the solution of (5) or (6) is unique.
Choose abasis in P,_l, say, X%, j € J, |J| = p. Then a natural spline S may

be presented as

S(X)=> X%+ d;G(X - Xj).
JEJ g€l

Denoting the vectors ¢ = (cj)jes, d = (dj)jer, 9 = (S(X;))ier and matrices

G = (G(Xi - Xi)ijer V = (XÜkerjes, we get

g=Vc+Gd

and (2) has an equivalent form d € KerV". This means also that KerVT do not

depend on the choice of the basis in P,_;. Let us verify that dim Im V = p.

Considering V:IRP — IR™ and Ve; = (Xiflj),-g, j € J, it is sufficient to show

that Ve; are linearly independent. But the equalities zje7 €infl7
= o,i€T,

imply €; =O, j € J. Now,asKer V' = (Im V), wehave dimKer V' = m—p.

Suppose S is the solution of (5) with d; # 0, 7 € I;. We know that S is also the

solution ofa smoothing problem with some weights w;, ¢ € I;. We need the matrix

W = (w;j)ijer, where wi; = w; fori € I, wy; = Ifori € Iy, and w;; = 0 for

¢ # 7. Then the conditions (4) may be written as

(-1)"Wd =,

with & = zi — S(Xi) for 1 € I and & = (—1)"d; fori € Iy. Denote

also € = (2 — gi)ier, 2 = (2i)ier, x: IR™ — IR™ the projection such that

(xd); = d;, 1 € Iy, and (xd)i = 0, i € Iy, Thene = z-—g + (—=l)"xd =

e+ (—l)"xd = (I — x)e + (—=l)"xd. From (8) and (9) in the form

(-)"Wd=2z—g+ (—l)"xd

we obtain

(8)

(9)
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Take an arbitrary symmetric regular m x m matrix A, set D = A~'V, and

II =l—-D(D'D)"'DT. Then IT> = 11. Let us show that II is an orthogonal
projection with Im IT = AKerV". Each z € AKerV'" is representable as z =

Ay, y € KerV'T, and

lz=2z-DD'D)'D"Ay=2-D(D'D)"'WTA14y = z.

This means that IT: AKerV' — AKerV'' is an identity and AKerV' C Im II

On the other hand, ifz € Im 11, then z = lly = y — D(DTD)~IDTy for some

y € IR™. Then,as DT = VTAl, we have

A Is— =
— =! IA 1,

— T I l ! TV V y-V A ID(D L
VD =) y A ly D y=o.

Hence A~'z € KerV'" or z € AKerV". Wehave proved that ImIT C AKerV"
and, consequently, Im IT = AKerV". In addition, for each z,y € IR™, we have

(Ilz,y) = (z, IIy), which means that the projection II is orthogonal.
Because d € KerV', we have Ade AKerV' and lIAd =Ad or

A7IAd = d. Let us show that lIA~IV¢ = 0 for all ¢ € IRP. It is equivalent
to A7!'Ve € (Im II)+ = (AKerV!)+ or (A7'Ve, Az) = 0 forallz € KerV'!.
But (A7'Ve, Az) = (Ve,z) = (c,V'z) = 0. Now, applying ILAT! to (10), we

obtain

(—IVHA 'WA 'Ad 1 1A 64 "HAd—Tl4‘2l(—I)'HA 'xd

or, taking (9) into account,

(TAT'WA! + (-1) HAGAAWYe=HAY(z + (=1)"xd). (11)

The system (11) connects the vector of weights w = (w;);cy, and the vector of

deviations €.

6. PROPERTIES OF THE SYSTEM CONNECTING WEIGHTS AND

DEVIATIONS

Since d € KerV', from (9) we know that W 1 € KerV' and

AWI € AKerV". Concerning the system (11), the following is important.

Proposition 2. The operator

MDA 'WA™ 4 (I)"TTA"YGA™MI: AKerV" — AKerV'T

is invertible.

Proof. First, suppose d = (d;) € KerV", d # 0. For S(X) = 3 d;G(X — X;),
jEI

according to (3), we have
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ITSI? = (-1)7) diS(X:)=(-1)")_ did;G(X;—X;)
el ijEI

= (-I)*'(Gd,d).

Hence (—1)"(Gd, d) > 0 because S & Pr_;.
Let z € AKerV. It means that z = Ay, y € KerV". Then

(MA™'WA™! + (-I)'HA'GA')z, )

> yllyl* > vol|z||?

for some vy, yp > 0. This completes the proof.
There is an important special case of the choice of A, namely, take A = Wl/2.

Then the system (11) may be written in the form

I+ QW2 =IW~2(z2 + (-1)"xd),

with Q = (—1)"TIW~Y/2GW ~1/211. Here the operator I + Q is invertible in the

whole space IR™.

Theoretically, the system (11) may be used to determine the vector of deviations

¢ for given W or to determinethe weights w; forgiven . However, in general, both

cases have accompanying unknowns xd.

Proposition 3. Under the condition

KerVT_LxKerVT

the system (11) determines uniquely the deviations by the weights and the weights
by the deviations.

Proof. LetusdenoteB = ITA7'WA~ + (—I)"TLA~'GA~'IL. First, suppose that

W is given. Consider the corresponding homogeneous system

BAW7L((P=dy)e ¥ (=1) xd) = (=1)"TIA xd.

It gives (here B! means the inverse of B in AKer V')

(I-x)e+(-I)'xd= (IWAB IA 'xd,

from which, applying I — x and x, we get

e = (FLI - xWAZ"BIBA;xd,
xd = xWATY'BA Yxd.

(12)
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Since W xd = xd, we obtain

(xd,xd) = (XWA!B 'IA'xd, xd)

= (B 1A 'xdA 'xd)

= (Ay,A7xd)=(y,xd)=0

where y € KerV" because llA7!xyd € AKerV" and B~ lIA " 'xd € AKerV.
Thus xd = 0 which gives also € = 0. Consequently, the system (11) determines

uniquely the vector of deviations e.

Conversely, suppose that € and the corresponding d are given or, we may say
that € is given. Let w be determined from (11), i.e., the triple w, €, and d satisfies

(11). Assume that the triple w’, €, and d also satisfies (11). Then let us solve the

smoothing problem with weights w’, as a result, we get some €’ and d’. Thus, the

triple w’, €', and d’ satisfies (11) too. In the first part of the proof we showed

that for given weights (we mean now w') there is a unique corresponding vector

of deviations. Consequently, ¢’ = e. The proof is complete.
Let us remark that the condition (12) is satisfied if, for instance, Iy = (), then

x = 0. This case is quite typical in practice when the data z are not known exactly.

7. DIAGONALIZATION OF THE MAIN MATRIX

Denote here Q = (—1)"IIA~!GA~TI. The system (11) may be written

QAW ‘e = -HATU((I - x)e + 1) xd)
+ ATz +(=1)"xd)

= HA Yz— (I —x)e) =HA Yz— (I =)&)

Consider the decomposition Q = PAPT, where Qp; = \ip;, @ € I, P = (pi)ier,
PT =P landA is the diagonal matrix with eigenvalues A; on the diagonal. In

the proof of Proposition 2 we have actually shown that Q) is positively definite on

AKerV'T and we know also that dimAKerVT = m — p. Since II is a projection
with Im [T = AKerV'T, the matrix Q has m — p eigenvalues A; > 0 and p

eigenvalues \; = 0. As PT = P!, we get

APTAWs =P lIA-

=P A Nz~(I-x)é).

For the definiteness suppose that in Section 5 we have introduced the index

setJC I in such a way that \; =O, i € J, and \; > 0, 7 € I\J. Now,let us

complement the p x m matrix V' = (Xiflj )jeJ, ier t 0 m X m matrix ¥ by

(13)
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adding zero-rows. Introducing C =VTA™'P, taking V'W™'é=o or

VTA'PPTAW16= CPTAW1 = 0 into account, and unifying the last

equality with the system (13), we get

(C+A)P" AW ‘e — P'HA(=- (1 - %))

Let us remark that ifwe mean V'' = (v;);c 7, then in the matrix C+ A the rows are

(vi, A"'pj)jer ifi € J (i.e., \; = 0) or only A; > 0 on the diagonal ifs€ I\J.
Solving the system (11) relative to €, we should not forget that € belongs to the

subspace WKerVT. At the same time, in (14) there is no such concern about £, a

priori it may be an arbitrary vector in JR™, since (14) yields CPTAW ~1& = 0.

The matrix C + A is regular if and only if the matrix (v;, A™'p;); jeJ, i€

(A"lvi,pj),-,je J is regular. The last matrix, being the Gram matrix of linear

independent systems of vectors A~1v;, 4 € J, and p;, i € J, is regular if and only
if the linear spans of A lv;, i € J,and p;, i € J, coincide. We show that the last

condition holds in any case. Since lID = 0 or MAIV =O, we get QA"IV — 0

This gives APTAIV = oor \i(p;;A v;) = 0,4 € I,j € J. As \; > 0 for

i € I\J, we obtain(p;, A~1v;) = 0,4 € I\J,j€ J. Because p;,% € I, is an

orthogonal basis in IR™, we conclude that A~1v; for all j € J belongs to the linear

spanof p;,1 € J.
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KAALUDEGA JA TOKETEGA SILUMISULESANNETEST

Svetlana ASMUSS Natalia BUDKINA jaPeeter OJA

On kaisitletud mitme muutuja funktsioonide tOketega silumisiilesande lahen-

damistkaaludega silumisiilesandele taandamise teel ningkirjeldatud ekvivalentsete

iilesanneteolemasolu. On leitud siisteem, mis seob toketega iilesande lahendi lihte-

andmetestkorvalekaldeid ekvivalentse iilesandekaaludega. Siisteemis esineb vaba

parameetrina suvaline siimmeetriline regulaarmaatriks. On esitatud tingimused
siisteemi iiheseks lahenduvuseks, kus tundmatuteks voivad olla nii kaalud kui ka

korvalekalded. Kui viia siisteemi maatriks diagonaalkujule, siis Snnestub siisteem

teisendada nii, et selle omadused on tunduvalt paremad kui iildjuhul.
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	Fig. 2. Fluorescence excitation spectra for a thin (~1 wm) sample of Tr-C;, at 1.7 K. Solid lines represent two successive scans of the same spectral interval with a delay of about 10 min; spectral resolution is 2 MHz. Zero laser detuning corresponds to 17 361.34 cm™ (A =575.992 nm). Excitation intensity was 1 W/cm?; laser scanning rate 10 MHz/s; signal collection 0.2 s per point. The spectrum of scan 2 is shifted in vertical direction for 1000 units. A single zero-phonon line (ZPL) of a stable terrylene molecule is present in both scans. Dashed lines represent the Lorentzian least-squares fits for both spectra with FWHM of 40 and 24 MHz for scans 1 and 2, respectively. Shift of the central frequency of the spectral line is 50 MHz and does not exceed the specified maximum error (60 MHz) of the laser spectrometer in fixing the preset absolute laser frequency before starting a scan. ZPL in scan 2 has a larger amplitude due to a change in the polarization of the excitation: E-vector of the linearly polarized laser light was turned for 45° to optimize the excitation conditions for the molecule under study.
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