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Abstract. The model matching problem for a discrete-time nonlinear system, described by a

higher-order difference equation relating the input, the output, and a finite number of their time

shifts is studied. A local solution around a regular equilibrium point of the system is given for

the case when the systems (dy, . . . , dp)-forward time-shift right invertible. The necessary and

sufficient conditions for solvability of the problem are derived in terms of the delay orders of

the system and the model. The paper does not give any algorithm which explicitly constructs

the controller; it only describes how to obtain such controller. The solution proposed in the

paper relies on the application of the implicit function theorem and is a natural extension of the

corresponding solution for nonlinear systems in the state space form.

Key words: nonlinear recursive systems, model matching problem, delay order, right
invertibility.

1. INTRODUCTION

The definition of the nonlinear model matching problem (MMP), now

recognized as classical, was introduced in [']. Given a system and a model, one is

looking for a compensator such that the outputs of the compensated system depend
on the closed-loop system inputs in the same manner as the model outputs depend
on the model inputs. This is a generalization of the linear MMP in the transfer

matrix approach. In general, the model is also assumed to be nonlinear. Often, the

system, the model, and the compensator are required to be causal. The MMP is a

typical design problem in the sense that it plays a key role in various other control

problems like the disturbance decoupling problem, the input—output linearization

and decoupling problem, and the model reference adaptive control.

For nonlinear systems, the MMP has mainly been studied for systems described

by state equations (see, for example, [*3] and the references therein). There are only
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few papers concerning the problem for nonlinear systems which are represented

by input—output models. In [*®] the MMP is studied for the systems described

by the Volterra series. In [6] the MMP is considered in the differential algebraic

setting where the input—output representation of the system is defined by differential

field extension. This is in remarkable contrast to the wide application of linear

higher-order input—output difference equations in digital control. The success of

this approach motivates our search for feedback design methods that can be directly
applied to nonlinear higher-order input—output difference equations.

The purpose of this paper is to study the MMP for the nonlinear system
described by a higher-order difference equation relating the inputs, the outputs, and

a finite number of their time shifts:

y(t)=F(y(t-1),... ,y(t - n),u(t —1),... ,u(t —n)).

Systems of the form (1) are called recursive nonlinear systems (RNSs) [*~°]. This

representation has obvious advantages if the model of the system has to be obtained

via identification, either using the traditional approaches [?] or the neural networks

[lo,ll].
One may think that once the equations of the RNS have been obtained via

identification, one can transform these equations into the state space form and then

apply the conventional state space control theory. However, this idea is not feasible

in practice, because the application of the realization algorithms is not an easy
task, even for linear systems. In the nonlinear case the situation is much more

complicated. Firstly, the realization problem of a given input—output nonlinear

system isnot completely solved. Secondly, it has been shown [1%13] that a nonlinear

input—output discrete-time system cannot, in general, be realized by state space

equations. To realize the recursive input—output model, one needs to introduce

generalized state equations whose dynamics involves the control variables and a

finite number of their time shifts [l2]. In other words, the class of recursive input—-
output models describes a broader class of systems than the class of the state space
models. Thus there is an obvious need to study several fundamental issues forRNS,
including the MMP that is critical to the advancement of the discrete nonlinear

control design techniques. j
In this paper we investigate the MMP only for a special subclass of RNSs —

(d1 ,dp,)-forward time-shift (FTS) right invertible systems [1415] — and follow

the approach used in the state space formulation, where the necessary and sufficient

conditions for local solvability of the MMP via regular dynamic state feedback

were formulated in terms of the delay orders. We show that the above result has

its direct counterpart for the RNSs. We concentrate on the local solutions around

a regular equilibrium point of the system. However, the paper does not give any

algorithm which explicitly constructs the solution; it only presents necessary and

sufficient conditions under which the feedback locally exists, the structure of the

controller, and describes how to obtain it. The solution given in the paper relies on

the application of the implicit function theorem.

(1)
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To our best knowledge, there exist only a few short papers dealing with the

synthesis problems for the RNS: ["] studies the output dead-beat control and ['®] the

output tracking problem. Both papers consider only the single-input single-output

systems.

2. RECURSIVE NONLINEAR SYSTEMS

Consider the RNS (1) at non-negative time steps in a finite time interval

0 < t < tF under the initial conditions

z(0) = [y"(-1),... ,»y"(-n),u"(-1),... ,u(-n)]T.

The mapping F is supposed tobe C“, the inputs u(t) € U, an open subset of R™,
the outputs y(¢) € Y, an open subset of RP. In this section we introduce some

preliminary material [14:151.

Definition 2.1. Equilibrium point. The pair of constant values (u°,l°) is

called the equilibrium point of the RNS (1) if (u%,y°) satisfies the equality
yO — F(yoa )yoauoa'“ ,UO).

Throughout the paper we shall adopt a local viewpoint. More precisely,
we work around an eguilibrium point (u°,y*) of the system (1). Let us

denote by U° (resp. U) the set of control sequences u = {u(t);0 <t < tr)
(resp. {ul(t—l),...,uT(t —n)}) such that the controls u(t) for every ¢ are

sufficiently close to u?, i.e., || u(t) — u° ||< 6 for some 6 > 0. Analogously, let

us denote by Y 0 (resp. Y)) the set of output sequences {y(t);0 <t < tp} (resp.
{yT(t —1),...,47(t — n)}) such that the outputs () for every ¢ are sufficiently
close oy, i.e., || y(t) —y° ||< € for some € > 0. Denote by J? the set of sequences

{yi(t);o < t < tp} such that || y;(t) — 4? ||< ¢; for some ¢; > 0. Denote by z°
a n(p + m)-dimensional vector (y%7,... %7, w%T, ... u%T)T. Finally, let us

denote by X° the neighbourhood of z° such that for every z€ X || 2— 2° < y

for some y > 0.

For RNSs, the delay orders d;,7 = 1,... ,p, with respect to the control have

been defined ['*!s], one for each output component, as follows. Apply the one-

step forward shift operator to Eq. (1) and replace in the latter y(t) via the initial

conditions, i.e., via theright-hand side of (1) in order to obtain

y(t+l) = PF(y(t),... ,y(t-n+1),u1t),...,ult-n +1))
= F(F(y(t-1),... ,y(t-n),u(t -1),... ,u(t -n)),...,

y(t —n+l),u(t),...,u(t—n+l))
2 Flyt-1),...,y(t—n),ud),... ,ult—n)).

Denote the ith component of F! by F! and compute for i = 1,...,p the

derivative

õui(t)Fil(y(t — 1)7 D 7y(t — n)7u(t)7 ttt ’u(t — 'I'L))
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From the analyticity of the system (1) it follows that either the vector OF(-) /Ou(t)
is nonzero for all (y(t —1),..., y(t —n),u(t),... ,u(t —n)) belonging to an

open and dense subset O; of Y x U or this vector vanishes for all (y(t —1),...,
y(t —n),u(t),... ,u(t —n)) € Y x U. In the first case we define d; = 1 whereas

in the latter case we continue by observing that the function F;'does not depend on

u(t), i.e., it depends completely on the initial conditions and so we may write

vult+l)= F'(y(t-1),... ,y(t-n),u(t -1),... ,u(t —n)).

Apply again a forwardshift operator to Eq. (2) and replace in the lattery(¢) via

theright-hand side of (1). Compute in an analogous fashion the derivative

oPt - D), 3=)(),... ut =),

If this vector is nonzero on an open and dense subset O; of Y x U, we setd; = 2;
otherwise we continue with

vilt+2)= FŽ(y(t-1),... , yt -n),ult -1),... ,u(t —n)).

In this way the number d; —if it exists — determines the inherent delay between the

inputs and the sth output.
These system structural parameters tell us how many inherent delays there are

between the ith component y; of the output and the control, or equivalently, for how

many first time instants y; is completely defined by the initial conditions and which

is the first time instant for which the possibility arises to change y; arbitrarily (which
does not necessarily realize in every case).

The RNS (1) with delay orders d;,7 = 1, ... ,p, admits a representation of the

form

yi(t+d) = Fh(z(t),u(t))

vt +dy) = Fy(z(t),u(t))

or in the vector form

Y 1 (t + d1)

: = A(z(t), u(t)),
Yp(t + dp)

where

z(t)=[y"(t-1),...,y"(t-n),u"(t-1),... ,
u" (t - n]T.

(2)

(3)

(4)

(5)
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Definition 2.2. (dy,... ,dp)-FTS right invertibility. The RNS (1) is called

locally (di,... ,dp)-FTS right invertible in a neighbourhood of its equilibrium
point (u®,y°) if there exist sets U°, Y°, and X° such that given (0) € X°, we

are able tofindfor any sequence {y.;(t);0 < t < tr) € V° a control sequence

{uref(t); 0 < t < tp} € U (not necessarily unique ) yielding

yi(t,x(O),Uu,-ef(O), oo ,u'r‘ef(t)) — y’r‘ef,i(t)7d’i <t<tp,i=l,...,p.

The above definition says that for the ith output component it is possible to

reproduce locally all sequences {y,si(t);o < ¢t < tp} from ), beginning from

the time instant d;. But (dy,... ,d,)-FTS right invertibility does not allow us to

reproduce the first d; terms in the arbitrary sequence {yr.fi(t);o <t <tp} € V.
Consider the RNS (1) with delay orders d; < 00, = 1,... ,p, 1.e., the system,

described by Egs. (4). The so-called decoupling matrix K (x,u) for the system (1)
is defined as

F{’l(w,u)} |: »

5% [Ffi"(x,u) =(z,K

From the definition of the d;’s the rows of the matrixK (z,u) are nonzero vector

functions around (u°, 3°). It is obvious that the rank ofK (x, u) is, in general, input
and output dependent. However, we shall assume that K (z, ) has a constant rank

around (u,y°). This assumption is formalized in the notion of regularity of an

equilibrium point.

Definition 2.3. Regularity of an equilibrium point. We call the equilibrium point

(u?,y°) ofthe system (1) regular with respect to (di, . . . ,dp)-FTS right invertibility
if the rank of the decoupling matrix K(x,u) of the system (1) is constant around

(a2l

Theorem 2.4. Assume that for the system (1)d; < 00, 1 = 1,... ,p. Thenthe RNS

(1) is locally (dy,. .. ,dp)-FTS right invertible around a regular equilibrium point
(u®,4°)ifand onlyif rank K (z°,u°) = p.

3. THE FORMULATION AND THE SOLUTION OF THE MODEL

MATCHING PROBLEM

Consider the RNS S, describedby (1), and a discrete-timenonlinear model M

of the similar form:

yM(t) = FM(yM(t —1) Y M(t L N), u (t —1) u(t — na))
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where the outputs y™ () belong to an open subset Y™ of RP, and the inputs u™()
belong to an open subset UM of R™, all for 0 < t < tp. The mapping FM is

supposed to be smooth. Denote

g(1) = [07(¢ — Lo DR~Mgt 25si- nu)]T.

The dynamic output compensator C, to be designed to control the system S, is

assumed to be a discrete-time nonlinear system described by equations of the form

yc(t) — Fc(yc(t — 1)7 K ’yc(t 3 nC)?“'M(t i 1)7 S 7uM(t i nC)),

'U,(t) — Ol(y(t 3 1)7 L ,y(t — n)au(t ° ]-)7 3 ,’U,(t o n)7
Y7t —1), - »yt -ne),u (t-1),... ,u(t — ne),u (8)),

(7)

with the output 4(¢) € YC, an open subset of RP, and FC being a smooth map-

ping. Notice that u(t) does not depend on the future outputs y(¢ + 1),... ,y(t +

d —1), but only on outputs up to the time instant ?, i.e., only on variables that are

available on the time instant ¢, and is therefore implementable. Denote

xc(t) = [yC,T(t — 1)7 i 7yC’T(t — nC)7 UC’T(t — 1)7 ttt
7uC’T(t — nC)]T'

The composition of (1) and (7) (i.e., the closed-loop system), initialized at

(z(0), 2“(0)), is denoted by S 0 C.
Recall that we are assumed to work in a neighbourhood of an eguilibrium point

of the system (1). We say that the equilibrium point (u™?, y™9) of the model M

corresponds to the equilibrium point (u?,7°) of the system Sif3° = 0,
Let us give now the formal definition of the local MMP for (dy, ... ,dp)-FTS

right invertible system.

Definition 3.1. Local MMP. Given the (di,... ,dp)-FTS invertible system S

defined by Eq. (1) around a regular equilibrium point (u°, y°), the model M defined
by Eq. (6) around an equilibrium point (u™°,yM°) corresponding to (u°,y°), and

the point (z(0), ™(0)), find, ifpossible, a compensator C defined by equations
of the form (7), together with the initial conditions .’L‘C(O), the equilibrium point
(uMO, yCO), the neighbourhoods Vi = X 9 x X 0 x UMO of (20, €O, uMO) in

Xx XS xUM and Vs oful inU being the domainand the range ofC, respectively,
as well the neighbourhood X™M° ofM° and the map ¢ : XMO — X 0 with the

property that

y b m (), Sl (00), w" (0);. .0e-1)

— yz]Vl(tva(O)auM(O)) auM(t — 1))7 di <t< tp, 1= 17'- P

for all (z(0),z™(0)) € X° x XMO and for all uM (t) in the domain ofC.
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Note that we do not require the first terms in the output sequences of S o C and

M (which are completely defined by the corresponding initial conditions) to be the

same.

Theorem 3.2. Consider the system (1) around a regular equilibrium point (u®,y°)
with respect to (dy, ... ,d,)-FTS right invertibility, and the model (6) around an

equilibrium point (u™?, yfif9, corresponding to (u°,y°). Suppose that the system

(1) is locally (du,. .. ,dy)-FTS right invertible around (u°,y°). Then the MMP is

locally solvable ifand only ifthe delay orders ofthe model (6) are equal to orgreater

than those of the original system: džVf >d;, i=1,...,p.

Proof. Suppose the system (1) is locally (dl,--- , d»)-FTS right invertible around

a regular equilibrium point (u°,4°). Then the decoupling matrix K (z, ) has rank

p around the point (z°, u%). Consider the equation

y(t+ dy)

: = A(z(t), u(t)).

Z/;,W(t + dp)

Observe that the Jacobian matrix of the right-hand side of (8) with respect to u(t)
equals K(z(t),u(t)). So we may apply the implicit function theorem yielding
locally u(t) as an analytic function of z(¢) and y (t + d1),... ,yz],‘/f(t + dp), i.e.,

u(t) = a(z(t),yl"(t + d1),... , 4 (t + dp))

such that

yi!(t+di)

: =A(z(t),a(z(t),y (t+dl),--- »y 7 (t+dp))).
yž,w(t+dp)

Then from (9) and (10) it follows that if and only if we apply a compensator
C given by Eq. (9) to the system (1), then the outputs of the model and the

compensated system coincide (starting from the time instant ¢ = d; for the :th output
component), i.e.,

Yl =yM@), d; <t<tp,ic{l,...,p}

as long as (z(t), y}! (t + d1), ...,y (t + dp)) €X°x Y? and u(t) € U°.

The compensator (9) can be given in the form (7) if and only if the delay orders

džw of the model are egual to or greater than the corresponding delay orders of the

system (1), that is, dZM > d;, i = 1,... ,p. In that case, defining the functions

FZ-M'di (zM) analogously to the functions Fidi (z) (see (4)), we obtain

(8)

(9)

(10)
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and substituting (11) into (9) gives

u(t) = a(z(t), EM% @M @t), ™(t), i=1,...,p) 2 o(a(t),2™(1),uM (2)).

Note that the outputs of the model y™ (i.e., the components of z) in this

control law can be computed from the dynamic equations of the model which thus

determinethe dynamic part of the compensator.
So, the compensator C together with its initial condition z¢(0) = z(0),

solving the MMP is the following

y"(t)

u(t)

A

-

(@

p(

;

z(t

,

), zM(t)l),” NM ), u (t —1) u(t- -nu))

and since ¢ (0) = z™(0), ¢ =ld (identity map).
From (11) we can see that (z(t),yM(t + d1),... ,yz],"[(t + dž',”)) belong to

X 0 x Y° as long as (z(t),z“ (t),uY (t)) belong to some neighbourhood Vi of

(z% z°% uMDY). This completes the proof.
Letus remark that the proof of Theorem 3.2, up to application of the implicit

function theorem, is constructive. If we know how to solve Eg. (8), the proof
indicates how to find the eguations of the compensator which solves the MMP.

4. EXAMPLES

Example 1. Consider the single-input single-output RNS §

y(t) = y(t — 3)y(t — 2)u(t —3) + y2(t — u(t —1), t>o,

which does not have a state space realization [*®], and the model M described by

y™M (1) =gyt ) +uM(t—1).

Since d = d™ = 1, the MMP is solvable around an equilibrium point (u°,4°) such

that y° # 0. In order to obtain the equations of the compensator (see the proof of

Theorem 3.2), we have first to solve the equation

yM(t + 1) =
= ylt — 2)y(t — Du(t —2) + y 2(t —2) u(t)

for u(¢) and then replace y* (¢ + 1) in the obtained equation by a?y™ (¢ —1) +

auM(t —1) + uM(t):

u(t) =

{a®y™(t —1) + au™(t —1) + wM(t) - yt — Dylt — Vult —2))/y*(t —2)

(12)

(13)
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The dynamics of the compensator is defined by (13).

Example 2. Consider the system

yl(t) = ul(t — ].) + Uz(t — 2)y2(t — 1),

y2(t) = wug(t—2) —ug(t—3)yl(t—2)+y3(t— 1),

ys(t) = —ua(t —1) —uz(t — 2)ya(t —2)

and the model

y'fw(t) zuzj'w(t_z)’ 1= la2a3-

According to (9), in order to find the compensator that solves the MMP, we have to

solve the following system of equations for u(t):

yMt +1) = wi(t) + uslt — l)[u2(t—2) —ua(t— 3)yl(t—2)
| +y3(t — 1)],

v2(t+3) = -uzlt)ui(t) — [u2(t)u2(t —1) + us(t)][u2(t —2)

—ug(t — 3)yl(t —2) +ys(t — 1)],
yMt+l) = —ug(t) —uz(t—l)ya(t —1).

Unfortunately, doing this we do not get the compensator of the form (7), since

yévf(t+3)=u§’[(t+l).

The reason is that one of the delay orders of the model is greater than the

corresponding delay order of the system: 3 = dy > d3f = 2.

S. CONCLUSIONS

The model matching problem (MMP) is studied for a class of recursive

nonlinear systems (RNSs), i.e., for systems, modelled by recursive nonlinear input—-
output equations involving only a finitenumber of input values and a finite number

of output values. The solution of the problem via the dynamic state feedback, known

for the discrete-time nonlinear systems in the state space form, is extended to the

RNS. The necessary and sufficient conditions for local solvability of the problem
as well as the procedure for constructing a dynamic output feedback compensator
are proposed for the subclass of (di, ..., dp)-FTS invertible RNSs. The proposed
solution has the following properties:
1. The model matching is achieved by using only input and output variables.

2. Thecontrol u(t) does not depend on futureoutputs, but only on variables that are

available at time ¢, and is therefore implementable.
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Ofcourse, it would be extremely interesting to relate the concepts and theresults

obtained in this paper to the known concepts and results of nonlinear systems in the

state space form, by first realizing the RNS in a state space representation. Since

the RNS, in general, cannot be realized by the standard state equations [12:131, this

comparison is not an easy task and can be done only for a subclass of realizable

systems. We leave this topic for the future research.
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MITTELINEAARSETE REKURSIIVSETE SÜSTEEMIDEMUDELIGA

SOBITAMISE ÜLESANNE

Ülle KOTTA

On uuritud mudeliga sobitamise iilesannet mittelineaarsete rekursiivsete siis-

teemide puhul, mis onkirjeldatavad sisendeid ja viljundeid siduvatekdrgemat jarku
diferentsvorranditega. (di,. .. ,dp)-nihkega paremalt pooratavate siisteemidealam:

klassi tarvis on leitud iilesande lokaalne lahendjuhtimisobjekti regulaarse tasakaalu-

punkti iimbruses. Ulesande lahenduvuse tarvilikud ja piisavad tingimused on for-

muleeritud kahe siisteemi — juhtimisobjekti ja mudeli — teatud tdisarvuliste struk-

tuuriparameetrite, nn. hilistumisjirkude abil. Et lahend pohineb teoreemil ilmuta-

mata funktsioonist, siis ei esita artikkel kompensaatori konstrueerimise algoritmi,
vaid ainult kirjeldab, kuidas seda leida. Esitatud tulemused iildistavad teadaolevaid

tulemusi olekumudeliga kirjeldatava mittelineaarse siisteemi jaoks.
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