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Abstract. To solve weakly singular integral eguations by the piecewise polynomial collocation

method it is necessary to solve large linear systems. In this paper a two-grid iteration method is

presented for the solution of such systems and the convergence rate of this method is discussed.

The efficiency of the method is shown.
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1. INTRODUCTION

Consider the weakly singular integral equation

u(z) = /K(z,y)july)dy + f(2), 2€ G,

G

where

G={£E=(:El,...,wn):o<sk<bk, k::1,...,n}

is an n-dimensional parallelepiped. Such an equation can be effectively solved by
a collocation method. In this case the parallelepiped G is partitioned into small

parallelepipeds (cells) and the approximate solution is searched in the form of a

function which on every cell is a polynomial of the same degree. Such a piecewise
polynomial collocation method is discussed, e.g., in [ ~2]. It is shown therehow to

choose the nonuniform grid so that the method would have the best convergence rate

(1)
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for weakly singular equations. To calculate the approximate solution, large linear

systems must be solved. In the present paper a two-grid iteration method is used for

the solution of such a system. At every step of this method it is necessary to solve a

smaller linear system corresponding to a coarse grid. The main results of the study
are presented in the last section where the convergence rate of the two-gridmethod

is proved.

2. INTEGRAL EQUATION

For the integral equation (1) we shall make the following assumptions
(Al)—(A3).

(A1 The kernel K (z,y) is m times (m > 1) continuously differentiable with

respect to z and y forz,y € G, = # y, and there exists a real number v € (—oo,n)
such that the estimate

1, v+|a| <0

|DsDž+yK(a:,y)| <const$ I+]/log|]z—yl, v+|a|=o
>, z,y €G,

ot vk e>o

holds for all multi-indices o € (e, ...,an) € Z% and B = (81,...,0n) € Z%
with |a| + |B] < m. Here

|a|:al+...+an, lxlz(x%++xž)l/2,

a
o) 9 )"

a 8 1 a õ Bn

Dfi — A A

eea —— —

.z+y (Õ:Bl + Õyl> (Õ.'l:n + Õyn)
(A2 f € CO™(G) with the same vas in (Al), ie., f(z) is m times

continuously differentiable on G and the estimates

1, ol <n—v

|D®f(z)] < const¢l+ |logp(z)], |a]=n—-v },

p(x)”7”-ll, J|a|>n-v

1 I<n-v
al )|Tf(l£2l§const{l+|logpk(m)|, l=n—u}Tk pr(z)”*7Ytl, — l>n-v

hold forz € G, |ja| < m, l = 1,...,m, k = 1,...,n, where pr(7) =

min{zg, by — 2x and p(x) = mini<k<n Pk(Z) is the distance from z to OG.

(A3 Equation (1) has a unique solution u € L% (G).
From (Al)—(A3) it follows that, for the solution u of (1), we have u € C™"(G)

[
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3. PIECEWISE POLYNOMIAL COLLOCATION METHOD

To define the partition of G into cells, we choose the vector

N = (Ny,...,N,) of natural numbers and introduce in the interval [O, bg],
k=l,...,n,the following 2Ny + 1 grid points

j bk jRXwžžNz—Z—('N';) > k =0,1,.---,Nk,

Nk-+jk
—

Nk-j ;
.'L'k,N —bk—SL'k’N]k, 5z1,...,Nk.

Here r € IR, r > 1, characterizes the degree of the nonuniformity of the grid. If

r = 1, then the grid points are uniformly located.
e

Making use of points (2), we introduce the partition of G into closed cells

jr—1 . —

Gj,N={x=(xl,...,xn):xfc’fN Sa:kgwfc’fN, k=1,...,n) cG,

jeJN:{j:(jl,---,jn):jk:]-,---,ZNk, k=l77n}

We determine the collocation points in the following way. We choose m points
Ml,- - -,Nm in the interval [—l, 1]:

—ln<Cm< <...<m< 1

By affine transformations we transfer them into the interval [xž'“š,l, xž'“N

; e oy A

N = xfiNl + __77qu+ (wikN - ccž'le) )

qk=1,...,m, jk=1,...,2Nk, k=1,...,n.

Note that 8i = G ie e =Lgk =k 2
We assign the collocation points

é-.]]\,rq: (šf„;glaašžzgn)a
qEq:f(J:(qla---,qn): qk:]-,"'ama k=1,...,n},

to the cells Gv, j € Jn.
For a function u: G — IR we construct a piecewise polynomial interpolation

function Pyu:G — IR as follows. On every cell Gjn, j € Jn, Pyu is a

polynomial of the degree not exceeding m — 1 with respect to any of arguments
$1,...,%n, Whereby Pyu interpolates u at points (3¢, ¢ € O. Thus, the

interpolant Pywu is uniquely defined in every cell separately and may have jumps
on hyperplanes z; = xfc’jN, ju = 002NI k= 1,0 o m. We may treat

2)
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Pnu as amultivalued function on these hyperplanes. Note that Py is acontinuous

function on G in the case n; = —1 and n,, = 1.

We can define the interpolation projector Py by the formula

(Pvu) (@) => u (&) ¥¥(a), 2eG jem
qeQ

where

ox () =PN(z1 - pN (En)

and (pi’j}g’“ (z) are the polynomials of one variable of the degree m — 1 such that

j ] 1, Pr=dk
=1,...,m.] N

=
?

Pk ) )9 (f’c’fNk) {O, Dk £ qk}’
Letus denote by 'y therange of the projector Pp. This is the finite dimensional

space of piecewise polynomial functions u on G which on any cell GjN» ] € JN;
are polynomials of the degree not exceeding m — 1 with respect to any of arguments
Tlll,y---+Zn-

We determine the approximate solution uwy € Ey of the integral eguation (1)
from the collocation condition:

[UN(x) — /K(fc,y)uN(y)dy - f(w)J =O, peQ, iEJx.

G x:E;:\}P

By the representation (3), we can find uyy € Ej in the form

uN(:z;) = ZCj'q(p%q(:l:), ifz € Gj,N, j EJN

qgeQ

where, as it follows from (4),

=un (47)
Now the collocation conditions (5) will take the following form of a system which

determines the coefficients ¢/ = uy (éf\}q):

JN7; €iO,&‘ P+ HE)',q)Ty (Ex) „quN> 2ai(ši,p) "

JEJIN qEQ

NUN

where

2(y)dy.N(éš(," , y) pKP3a
— /NaN

G]!

(4)

(5

(6)

3)
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If ;1 > —lorny, < 1, then all collocation points £37, ¢ € O, 7 € Jn,
are different and there are (2m)™Nj ... N, collocation points. Thus, in this case

the system (6) has (2m)"N; ... N, = dimEy equations and the same number of

unknowns. Ifn; = —landn,, = 1, then part of the collocation points will coincide.

In this case the corresponding equations will coincide as well. The number of

different collocation points is [2N;(m—l)+l] ... [2Np(m —1) + 1] = dim Ey
and the system (6) has the same number of equations and unknowns.

The collocation method described above is thoroughly discussed in Vainikko

[3]. The convergence of this method under assumptions (Al)—(A3) and the

estimation of the convergence rate are proved there.

To apply the method, it is necessary to solve the linear system (6). We write this

system in the form

ünr = KnUÜn + F x

where ÜN = (u (gg&q»jeJN,qu’ fx = (f (ffiq))jeJN,qu are vectors and

Kn = (a"P99);jc7yp,ge@ 18 a matrix.

Usually the system (7) has very many equations, which makes it rather

cumbersome to solve. An effective method to solve this system is a two-grid
iteration method.

4. TWO-GRID METHOD

In addition to the original grid corresponding to N = (Ny,...,N,), we

define another grid, the coarse grid, corresponding to M = (M;, ..., M), where

My, k=1,...,n, are the integers so that My = Ni/ux with uy the integers
greater than 1. Then every cell of the original grid G,v, j € Jn, is fully contained

in some cell G;s of the coarse grid.
To solve the system (7), the following two-grid iteration method is used:

=
—

=l 77l
F

— —1 —wh, = (In — Kng) 'RyKntly,

—l+l — =1 —]
—’U,A}I' =’U,SV—-’UN—PMN’wM, =0 {2

where 79, is the initial guess of wy, Iy is the identity matrix, Ryas: RN —

IR (dy = dimEy) is therestriction operator defined by

(RNMICNÜÕV) (šš&f) = jš:NšGJ/N K (C%,y) pi (y)dyvw (ff;}q)

and P:RM — IRV is the prolongation operator defined by

(Purti) (87) = 2wi (E7 vi (657) . 27637 € G

qeQ

(7)

(8)
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Similar two-grid iteration methods for weakly singular integral equations are

considered in [27°].
We write the integral equation (1) in the form

u=Ku+f,

where

(Ku)(z) = /K(z,y)u(y)dy.
G

It is easy to see that the approximate solution uy € Ey of (1), determined from the

collocation condition (5), is the solution of the equation

uy = PnKuy + Pyf.

For the investigation of the convergenceof the method (8) we use the following
result.

Lemma. Let the assumption (A1 hold. Then

IC - pNK:HL”(G)—)L”(G) < const Eyhy,

where

h
b

N = Max —

I<k<n Ny

and

hn, v<n-l

Ephy = $ hxr(l+]loghx]);, v=n-15».

h v>n-l1

Proof. Letz€ G;x and u € L*°(G). Then

(K~ Pri)ul(o) = [ K(aguwy - 3 vitla)[ K (&,0) ulw)dy
G 7€Q G

=N ¢ll@ / [K(z,y) - K (š%q,y)] u(y)dy.
9€Q G

At first we estimate l(p%q(x) ‘ The change of the variable

1
G | Mt+l Tk jel

Tk=Tkx +O— N T TkN

9)

(10)
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gives

| m
—

Jk»S m

Jk:qk( —

xk šk,N n- nS

Prx (Tr) = RAL H
A Gy e74 —

s#qy, s#qy,

Denote

r

97-9
c= max max H—s .

I<gr<m —l<n<l
sei 7x —) s

sSfdk

Then

<p3;’,q(a:)| = lsO{f;?l (xl)| i Iwi’,‘;’@"(wn)l <c* for £ € Gjn...

Thus, for z € G n, we get

C -P@) < e [ [K(a,y) -K» uia
G

In the same way as in the proof of Lemma 2.3 in [3], from the assumption (A1 it

follows that

[ [K@O) - K(E m wldy < constlullzeoy,g
G

Therefore, if z and d\}q are placed in G,v, then

L = i i COIISthN.j,q! < dla,mG],N <fN
>

=

The assertion of the lemma follows from these results.

We are now ready to prove the following result about the convergence of the

two-grid method (8).

Theorem. Let the assumptions (Al)—(A3) hold. Then there exists My so that, for
Ni > My, k = 1,...,n, the system (7) has a unique solution uy and the two-grid
iteration method (8) with My = Ni/ux > My, k = 1,...,n, converges to this

solution with the rate

]üf,;,'"l —ay|| < consta„,hMHüfN —ayl||, 1 =O,l,

where

BN = max u j’ql.= max v(&)

(A1

(12)
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Proof. We use the approach of [] and consider the iteration method, corresponding
to (8), in functional spaces.

Define the operators Roon: En — R (dy = dimEy) and Pyoo: RN —

E'n by the equalities ;

(R00n9)(E59)= 9(639), j€JN, q€Q,

and

(Prootin)(z) = Y un(Ee(z), z€Gin, j€ln.
qeQ

These operators define one-to-one correspondence between the elements of£y and

IR~
.

In the following we use the operator R for all functions defined in the

collocation points &X7.
Denote

Al
—

l

Making use of the identities

RooNPnro=ln, PNooßoon =P,

Kn = RooNKPNoos PNnoPMN = F Moo,

we write the formulas (8) as follows:

'uf,v— = ušv — 'PNICuIN — Pnf,

'wa = (I — PM]C)—I'PMK:'UšV,

ušÜ,'l = ušv—všv—'wšw, [=o,]l,.

Whereas U?v = 'PNOOÜ(]]V € En, we also have Ušv € EN, wš„ € Ep C En,

and ušf;l € En,l = 0,1,... Therefore the methods (8) and (13) are eguivalent.
At the same time the method (13) is an iteration method to solve (10), and (10) is

equivalent to (7) with uy = PnoolUn, UN = ReoNUN-
By the lemma,

1K = PuK|| = [C — PuK||poo(G)—Lo() < consteyp,, —0,

if hpy — 0. Due to (A1 and (A3 there exists the inverse operator (I — )1
from L*°(G) to L*°(G). Therefore there occurs My such that for My >M,
k =1,...,n, inverse operators (I — P;K)~! exist and are uniformly bounded:

(I = Park) ™| < const.

It then follows that (7) has a unique solution for every Ny > My, k =1,...,n, and

the formulas (8) and (13) define unique sequences Üšvand qu, I = 1,2,..., for

Mk ZM(), o = 1,...,n.

(13)
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From (13) it is easy to derive the identity

übt! —uy = (I — PyuK)L(Py — Pu)Kluk — un),

where uy is the solution of (10). By the lemma,

lIPx — PmM)XI| < IC — PuXl| + C — PXl| < consteyp

and therefore, for M, > My, k =1,...,n, we have

lubi! — ]| < conste,by,|July — unl|

The estimation (12) follows from (14), whereas

||Ü+l -Ü —
+1

N N= |Roon (uF? — un)|| < [Jult! — un]|

and

wh = un|] = ||Proo(@y — Tn)|| < const|[@y — Z|

The last inequality is the consequence of the expression of Py and of the

estimation (11).
From (12) we see that the two-grid iteration method (8) converges quite quickly

provided that My, k = 1,...,n, are chosen sufficiently large.
To solve the system (7) with the direct methods of Gauss type, it is necessary

to do O(d3;) arithmetical operations. Arguing analogously to [*], we see that the

approximate solution of the system (7) of suitable accuracy can be found by the two-

grid method (8) applying O(d%) arithmetical operations. For this end, we need to

choose M so that dy = d, 0 < 7 < 2/3. A good strategy will be dps ~ d]l\;?.
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KAHEVÕRGUMEETOD NÕRGALT SINGULAARSETE
INTEGRAALVÕRRANDITE LAHENDAMISEKS TÜKITI

POLÜNOMIAALSE APROKSIMATSIOONI ABIL

Enn TAMME

Norgalt singulaarse integraalvorrandi lahendamisel tiikiti poliinomiaalse
kollokatsioonimeetodiga tuleb lahendada suuri lineaarseid vorrandisiisteeme.

Käesolevas toos on esitatud selliste siisteemide lahendamiseks kahevorgu ite-

ratsioonimeetod ja selgitatud selle koonduvuskiirus, millest jareldub meetodi
efektiivsus.
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