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Abstract. It is shown that for each finite group G there exists a finite group H such that the

directproduct G x H is determined by its endomorphism semigroup in the class of all groups.
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1. INTRODUCTION

Let G be a fixed group and End(G) the semigroup of all endomorphisms
of G. If for an arbitrary group H the isomorphism of semigroups End(G) and

End(H) implies the isomorphism of groups G and H, then we say that the

group G is determined by its semigroup of endomorphisms (in the class of all

groups). There are many groups that are determined by their endomorphism
semigroups, for example, finite Abelian groups (['], Theorem 4.2), nontorsion

divisible Abelian groups ([2], Theorem), Sylow subgroups of finite symmetric
groups ([3], Corollary 1). On the other hand, there exist also groups that are not

determined by their endomorphism semigroups: the alternating group A 4 [4], some

semidirect products of two finite cyclic groups [°]. In this connection let us set

a problem: For a given group G, find a group K such that G C K and K is

determined by its endomorphism semigroup. For example, as the finite symmetric

groups are determined by their endomorphism semigroups [®], this problem has an

affirmative solution for all finite groups.
In [7], the mentioned problem is specified (problem 3.49): Is it possible to find

a group H for a given group G such that the direct product G' x H is determined by
its endomorphism semigroup? For Abelian groups this question has an affirmative
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answer ([3°]). In the present paper this problem is solved for finite groups. Using
the ideas of ['] and ['°], we will prove the following theorem.

Theorem. Let G be a finite group. Then there exists a finite group H such that the

direct product G X H is determined by its endomorphism semigroup in the class of
all groups.

2. PRELIMINARIES

Let G be a group. If A is a subgroup of the centre Z(G) of G, then G is a

central extension of A by the group B = G/A. Let {g, | @ € B} be the set of

representatives of elements of the factor group G/A and M = {my4 | o, B € B}
(shortly M = {mg}) the corresponding system of factors, i.e., g093 = JapMa,-
Then

G={gaa|a €A, a€B}

and the product in G is given by

(920) (gflb) = Gop (ma,flab)

([*'l, pp. 315-323). Note that by (1) the group G is well defined if there are given
a group B, a commutative group A, and the factor system M on A (see ['!] for

conditions that must hold for factor systems). In thesenotions the following lemmas

hold.

Lemma 1 ([l°], Lemma 2). Let 1 € End(A) be such that thefactor systems M =

{ma,p} and (M) = {Y(mq,g) } are equivalent, i.e., P(mq, g) = c;éma,ficacfl
for some c,, € A, a € B. Then 1) can be extended to an endomorphism ¢ ofG by
setting

p(9) = ©(9oa) = gaca P(a), g = gaa € G.

Furthermore, if 1) € Aut(A), then the corresponding o is an automorphism ofG.

Lemma 2 ([*2], p. 248). Assume that B is of the order n and M = {ma,p}isa
factor system on A. Then the factor systems {my, 5} and {l4, }, where 14,gis
the unit element of A for each o, B € B, are equivalent. :

Lemma 3. Let B be a finite group of the order n and m a natural number, n < m.

Then there exists only a finite number ofnonisomorphic finite groups G such that

End(G) = m and the group ofall inner automorphisms of G is isomorphic to B.

Proof. Choose B, n, and m as stated in the formulation of Lemma 3. Assume that

G is a finite group such that

(1)



(6)
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and the group of all inner automorphisms of G is isomorphic to B, i.e., B = G/A,
where A = Z(G). Then G is a central extension of A by B. Let M = {mq, g } be

the corresponding factor system.
Let us fix now an arbitrary natural number k and consider the endomorphism

(k) of A given by K

(¥(k))(c) = L, c€ A.

In view of Lemma 2, the factor systems M = {m,,3 } and

($(k)) (M) = { (s(k))(ma,p)}= {mss"}

are equivalent. Therefore, by Lemma 1, the endomorphism (k) of A can be

extended to the endomorphism ¢(k) of G. By (2) there exist k and [ such that

0 <!l <k< mandop(k) = ¢), ie, 1 = ntl and cb-Un = 1 for

each ¢ € A. Suppose r is the smallest positive integer with the property ¢ = 1

for each ¢ € A. Therefore A = Z(QG) is bounded and

r <m.

Denote

H = (ga, ma,p|a,B€B).

Then H « G, G/H = AH/H is commutative and

|H| < |B| (rn)™! = n (rn)™".

If H # G, then the factor group G/H splits up:

G/H = ®;er{a;H),

where a; € A\ H. There exists a nonzero homomorphism

Tt (e H) — (a;)

for each ¢« € I. Each 7; generates an endomorphism & = 7;me of G, where

€ : G — G/H is the canonical homomorphism and 7; : G/H — (a;H)
is the projection. It follows from here and Eg. (2) that |7| < m, |G/H] < (rn)!"!.
Thus

IG/H] < (rn)".

The inequality (5) holds in the case G = H too. Therefore it holds always.
By the inequalities (3)—(5),

G| = |G/H| |H| < (rn)™ n (rn)™

=n (7"n)m+"2 <n (mn)m+"2.

(3)

(4)

(5)
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As m and n are fixed, there exists only a finite number of nonisomorphic finite

groups G satisfying the inequality (6). Lemma 3 is proved.

Lemma 4. Let Gbe a finite group. Then there exists only a finite number of
nonisomorphic groups H such that End(G) = End(H).

Proof. Let G be a finite group. Then End(G) and Aut(G) are also finite. Suppose
that B, ..., By is the list of all subgroups of Aut(G). Assume now that H is a

group such that End(H) = End(G). By ['°], Theorem 2, the group H is finite.

Since Aut(H) = Aut(G), the group of inner automorphisms of H is isomorphic to

Bjforsomei € {1,2,..., k}. Hence, H/Z(H) = B;. In view ofLemma 3, there

exists a finite number of nonisomorphic groups H such that End(H) = End(G)
and H/Z(H) = B;. As i takes k different values, the statement of the lemma is

evidently true. The lemma is proved.

3. PROOF OF THE THEOREM

Let us start now with the proof of the theorem. Assume that G is a finite group.

By Lemma 4, there exists a finite number of nonisomorphic groups K such that

End(G) = End(K). Suppose that all those groups are G = Gg, Gy,
...,

Gy.
Denote the direct product of Gy, Gy,

...,
G, by Q:

Q =Gy} @i .. @= GogGiißue. % @,

Our aim is to show that the group (@ is determined by its endomorphism semigroup.
Assume that R is agroupand End(R) = End(Q). We shall show that the groups

R and () are isomorphic. Fix an isomorphism

*: End(Q) — End(R).

Let 7; be the projection of @ onto the subgroup G; (1 =O, 1, ..., n). By ['], pp.

79, 85, and 86, the group R splits up

—

* *R=lmmy x ... xlm7,

and

End(lm 7}) =2 End(lm 7;)= End(G;) = End(QG)

foreachi € {O, 1, ..., n}. Moreover, 7} is the projection ofR onto Im7 . By
the choice of groups Gy, ...

, Gy, each Im 7 is isomorphic to a group from the set

160, .0 G"
Note that each { € Hom(lmm;, In7;) = Hom(G;, G;) can be naturally

extended to an endomorphism of O by setting

&lgh) = &g,

(7)

(8)

(9)
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where g € Im; = Gi and h € Ker ;. We shall identify ¢ with its extension. Then

Hom(lmz;, Im7j) = (£ € End(O) | Emi = € = 156).

By the isomorphism (8),

(Hom(lmm;, Imm;))* = {£* € End(R) |§*n] = = 156)
= Hom(lm 7}, Im 7).

As the groups Go = Im7mg, ...,
G, = Im, are nonisomorphic, for

different 7 and j there exist no endomorphisms o, 8 € End(Q) such that @ €

Hom(lmz7;, Imz;), 8 € Hom(lm7;, Imm;), and Ba = "7, @8 = 7;. In

view of (10), the same holds also in End(R), i.e., for different 7 and j there are

no endomorphisms a* € Hom(lmax;, Im7zž) and 8* € Hom(lm 7}, Im7}), so

that f*a* = =} and o*3* = m;. Therefore, the subgroups Img, ...

, Imm7y,
of R are nonisomorphic. Since each Im 7 is isomorphic to a group from the set

{Go, ..., Gy}, it follows from the decompositions (7) and (9) that the groups

Q@ and R are isomorphic. Consequently, the group Q = G x H, where H =

G 1 X ...
X Gy, is determined by its endomorphism semigroup (if Q = Gy = G,

then H = (1)). The theorem is proved.
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LÕPLIKE RÜHMADE SISESTUSTEOREEM

Peeter PUUSEMP

On tdestatud, et iga 16pliku rithma G jaoks leidub selline 16plik rithm H, mille

puhul nende otsekorrutis G X H on méératud oma endomorfismipoolrithmagakoigi
rithmade klassis.


	b10720984-1997-4 no. 4 01.10.1997
	Chapter
	Untitled

	PHYSICS. MATHEMATICS FÜÜSIKA. MATEMAATIKA
	CONTENTS
	AN EMBEDDING THEOREM FOR FINITE GROUPS
	LÕPLIKE RÜHMADE SISESTUSTEOREEM

	TWO-GRID METHOD FOR THE SOLUTION OF WEAKLY SINGULAR INTEGRAL EQUATIONS BY PIECEWISE POLYNOMIAL APPROXIMATION
	KAHEVÕRGUMEETOD NÕRGALT SINGULAARSETE INTEGRAALVÕRRANDITE LAHENDAMISEKS TÜKITI POLÜNOMIAALSE APROKSIMATSIOONI ABIL

	MODEL MATCHING PROBLEM FOR NONLINEAR RECURSIVE SYSTEMS
	MITTELINEAARSETE REKURSIIVSETE SÜSTEEMIDE MUDELIGA SOBITAMISE ÜLESANNE

	ON SMOOTHING PROBLEMS WITH WEIGHTS AND OBSTACLES
	KAALUDEGA JA TOKETEGA SILUMISULESANNETEST

	FLUORESCENCE EXCITATION SPECTRA OF SINGLE IMPURITY MOLECULES OF TERRYLENE IN n-DECANE
	Fig. 1. The fluorescence excitation spectrum of terrylene (molecular structure presented in the insert) in n-decane at 1.7 K. Sample was about 3 um thick, excitation intensity 0.1 W/cm*. Zero laser detuning corresponds to A = 576.0 nm (v = 17 361.11 cm™). Laser scanning rate 10 MHz/s; signal collection 1 s per point. Spectral resolution is 10 MHz. Sharp peaks correspond to ZPLs of the S;«S, transition of individual terrylene molecules.
	Fig. 2. Fluorescence excitation spectra for a thin (~1 wm) sample of Tr-C;, at 1.7 K. Solid lines represent two successive scans of the same spectral interval with a delay of about 10 min; spectral resolution is 2 MHz. Zero laser detuning corresponds to 17 361.34 cm™ (A =575.992 nm). Excitation intensity was 1 W/cm?; laser scanning rate 10 MHz/s; signal collection 0.2 s per point. The spectrum of scan 2 is shifted in vertical direction for 1000 units. A single zero-phonon line (ZPL) of a stable terrylene molecule is present in both scans. Dashed lines represent the Lorentzian least-squares fits for both spectra with FWHM of 40 and 24 MHz for scans 1 and 2, respectively. Shift of the central frequency of the spectral line is 50 MHz and does not exceed the specified maximum error (60 MHz) of the laser spectrometer in fixing the preset absolute laser frequency before starting a scan. ZPL in scan 2 has a larger amplitude due to a change in the polarization of the excitation: E-vector of the linearly polarized laser light was turned for 45° to optimize the excitation conditions for the molecule under study.
	TERRÜLEENI UHE LISANDIMOLEKULI FLUORESTSENTSI ERGASTUSSPEKTRID n-DEKAANIS

	GREEN’S FUNCTIONS FOR A SCALAR FIELD IN A CLASS OF ROBERTSON-WALKER SPACE-TIMES
	SKALAARVÄLJA GREENI FUNKTSIOONID TEATUD KLASSI ROBERTSONI-WALKERI AEGRUUMIDE KORRAL
	SHORT COMMUNICATIONS


	SUBSYSTEM FORMATION IN THE TWO-LEVEL CONTROL SCHEME
	Untitled
	Untitled
	CHRONICLE
	Untitled
	Untitled
	Harald KERES 85
	Untitled
	INSTRUCTIONS TO AUTHORS
	Untitled

	CONTENTS OF VOLUME 46




	Illustrations
	Untitled
	Fig. 1. The fluorescence excitation spectrum of terrylene (molecular structure presented in the insert) in n-decane at 1.7 K. Sample was about 3 um thick, excitation intensity 0.1 W/cm*. Zero laser detuning corresponds to A = 576.0 nm (v = 17 361.11 cm™). Laser scanning rate 10 MHz/s; signal collection 1 s per point. Spectral resolution is 10 MHz. Sharp peaks correspond to ZPLs of the S;«S, transition of individual terrylene molecules.
	Fig. 2. Fluorescence excitation spectra for a thin (~1 wm) sample of Tr-C;, at 1.7 K. Solid lines represent two successive scans of the same spectral interval with a delay of about 10 min; spectral resolution is 2 MHz. Zero laser detuning corresponds to 17 361.34 cm™ (A =575.992 nm). Excitation intensity was 1 W/cm?; laser scanning rate 10 MHz/s; signal collection 0.2 s per point. The spectrum of scan 2 is shifted in vertical direction for 1000 units. A single zero-phonon line (ZPL) of a stable terrylene molecule is present in both scans. Dashed lines represent the Lorentzian least-squares fits for both spectra with FWHM of 40 and 24 MHz for scans 1 and 2, respectively. Shift of the central frequency of the spectral line is 50 MHz and does not exceed the specified maximum error (60 MHz) of the laser spectrometer in fixing the preset absolute laser frequency before starting a scan. ZPL in scan 2 has a larger amplitude due to a change in the polarization of the excitation: E-vector of the linearly polarized laser light was turned for 45° to optimize the excitation conditions for the molecule under study.
	Untitled
	Untitled
	Untitled

	Tables
	Untitled
	Untitled
	Untitled




