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Persistent spectral hole burning (PSHB) [l’ 2] has opened a novel field

of science and applications (see e.g. [3_s]). PSHB, based on zero-phonon
lines (ZPL) [*~], which are very narrow and of high peak intensity only at

liquid helium temperature, is up to now actually confined to temperature
below about 10 K. On the other hand, low-temperature PSHB has
demonstrated its very high capacity in optical data storage and processing
in a number of fascinating ways (see [3] and review papers [7"10]):
frequency domain holography > > ] time domain holography ],
space-and-time domain holography po 2], optical modelling of neural

networks [!°]. The PSHB applications are well implanted in laboratories,
eguipped with liguid helium facilities. For commercial applications the

liquid helium is still not popular and PSHB at high temperature (room or at

least liguid nitrogen temperatures) is reguired. The problem of high-
temperature ZPLs and founded on them spectrally selective PSHB is

interesting also for solid state physics.
Straightforward attempts to find bulk materials with high storage

capacity c = Vinh / Thom (linn — inhomogeneous and Thom — homogeneous
ZPL widths) have not been really successful, firstly, because the high-
temperature ZPLs are usually several orders of magnitude broader or less
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intense or both than the liquid helium ones. Further, the conditions for a

narrow ZPL and large inhomogeneous broadening are to a certain extent

contradictory. ZPLs are intense and narrow when the difference between

the adiabatic potentials (potential energy surfaces) of excited and ground
electronic states is small. On the other hand, the same condition leads to

small inhomogeneous broadening ['%]. Thus it is difficult to get large the

decisive for data storage parameter —
the information storage capacity c.

However, in principle it is not impossible to find a high-temperature
high-c material. The efforts have to be continued but parallel attention

should be paid to ways of designing devices which use materials with

quite modest ¢ values.

The objective of this short note is to discuss the outlooks for that kind

of devices.

One possibility is to use an impurity activated solid having in spectrum
a relatively narrow homogeneous high-temperature ZPL, e.g. 1 cm”' at

room or 0.1 cm7! at liguid nitrogen temperatures. Inhomogeneous
broadening can be magnified to some extent (e.g. tenfold) manipulating
the structure and composition of the host solid. Up to a hundred spectrally
distinguishable holes can be burned in at room temperature (see papers by
Jaaniso and Bill in [s]). Make an optical fibre of this material and put the

fibres together into a bundle of fibres, and form thus a data storage and

processing device (as proposed in [ls]) in which each fibre can be

addressed in hole burning write-in and optical read-out as an independent

spatial pixel. Thus a bundle of 1 cm? cross section comprising 1000 fibres

provides about 10° space-and-frequency domain pixels. The length of

fibres is not important. In the case of long fibres different sections of them
can be activated with different impurities and thus enhance the capacity by
a factor of 10.

Another possibility is to utilize better the frequency dimension finding
ways to get narrower ZPLs. If we place the PSHB material in the near field
of the evanescent waves, e.g. activate with impurities the coating of a fibre

(or the surface of a waveguide plate as in [l6]), we can utilize the stronger
gradients of the electric field compared to those of the far field and get
thus two benefits: enhancement of inhomogeneous broadening and

softening of selection rules for forbidden transitions.
A proposal to try a high-temperature PSHB data storage device could

be formulated in the following six points.
(1) Find a ZPL, narrow at high temperature. Perhaps the best ZPLs

could be found for some forbidden transitions having very small

oscillatory strength. Note that at 7— 0, because of the very small
radiative linewidth, the homogeneous peak absorption cross section

(PACS) can be rather large, e.g. about 1071! cm?, if other transitions

beside radiative ones are excluded [l7]. At high temperatures the situation
is different: nonradiative processes are strongly prevailing. Nevertheless,
the small oscillatory strength is not the principal obstacle: the very large
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radiative PACS, exceeding the geometrical size of an impurity by a factor

of 100 000, opens some prospects.
(2) Try to distort the symmetry at the site of impurity and thus gain two

effects. First, soften the selection rules and thus enhance the oscillatory
strength. Second, enlarge the inhomogeneous broadening.

(3) Place the impurities in the near field of the exciting light. A possible
way to do this is to cover a waveguide (optical fibre or a planar
waveguide; see ['®l) with the impurity-activated solid as a coating so that

the evanescent part of the laser light propagating along the fibre will

perform the excitation.

(4) Make the interface between the fibre and coating rich of tiny
roughnesses having sizes smaller than the exciting wavelength (e.g.
implanting grains smaller than the wavelength of a proper optical material

into the coating). The exciting evanescent waves will be distorted and

forced to have faster spatial changes (higher spatial harmonics enhanced)
and thus the gradients in the exciting field can be large compared to those
in the freely propagating light in the far field of the same frequency. This

will mean enhancement of the higher multipole (beyond the dipole)
transition probabilities (which are not actually forbidden, but very small

because the wavelength of the conventional exciting (freely propagating)
light exceeds the size of the impurity centre by about three orders of

magnitude).
(5) Hope that the dose of irradiation required to burn holes is not

hopelessly large and the holes are of good shape and stable enough even at

high temperature. For a host disordered in the vicinity of the impurity
photophysical mechanisms of hole burning can be effective. To implant a

co-activator to enhance the hole burning is attractive, but the energy
transfer from the principal activator must not destroy the spectral
selectivity of the hole burning.

(6) Compose the fibres coated as described above in a device proposed
in [l°].

A more detailed description of the expected characteristics and possible
difficulties will be published elsewhere in the context of high-temperature
ZPLs.

Some remarks.

(1) The statement in the second sentence of reguirement 5 is to a certain

extent contradictory to a stable hole: the disordered host usually opens also

easy pathways for diffusion and spectral diffusion, especially when there

is a contribution to disorder by vacancies and other "empty places". The

first part of this requirement is also not easy to match: if the excitation

energy is absorbed in a zero-phonon transition, which ends in a well

screened excited electronic state, Stokes losses are small and the transfer
of its energy to environment is hindered and creation of photophysical
hole-burning processes is difficult.

(2) The really narrow at low temperatures homogeneous ZPL widths of

forbidden transitions can be measured via the dephasing times by photon-
echo (and other time domain) methods. If a very narrow spectral hole is
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burnt, the frequency domain measurements based on Doppler shifts [lß]
can also be used.

(3) Note that the situation reminds us to some extent of the surface

enhanced Raman scattering [l9], which provides the enhancement of the

scattered light (or site selective fluorescence from a broad inhomogeneous
body of impurities?) up to six orders of magnitude.

(4) The use of different dopants which provide not completely
overlapping inhomogeneous bands to activate different sections of the

fibre can be a favourable approach to get a summary inhomogeneous band

quite a few times broader than that for a single dopant and thus enhance c.

The other option, already shown experimentally to be prospective, is to put
together a "sandwich" of layers of different host materials (ionic mixed

crystals), activated with the same activator (Sm2+) [2o]. Different

activators in one host have been realized with organic hole burning

materials [l3].
(5) Up to now the best results for room-temperature PSHB have been

obtained with narrow f—f transition's ZPL in rare earth ions (see [2o] and

references therein). In these papers inhomogeneous broadening is

magnified by using the disordered composition of ionic host. Seven holes

for a single sample are demonstrated and the possibility of burning a few

tens of holes using composite materials is shown. In [2l] room-

temperature PSHB in a neutron-irradiated diamond is reported.
(6) To have a very rough estimate in numbers, it is supposed (for bulk

PSHB solids) in [!4] that the decisive parameter, capacity ¢, decreases by
a factor of 10 with each step in the sequence of increasing temperatures
2K> 10K—77 K—3OOK. Thus, if at 2K 100000 holes are

available, at room temperature 100 holes have to be considered as a

roughly estimated limit for the best high-temperature PSHB bulk

materials. A few tens of holes have already been reported [2%]. To continue
the line of intuitive rough estimates, I would say that the coated fibre with
a number of different activators in the near field design could enhance the

number of high-temperature holes by a factor of 10, i.e. up to 1000 holes
in one fibre at room temperature should be possible. Thus, an optical cable

comprising 1000 fibres [2l] can process one million bits; taking into
account the possibility of utilizing also the differences in the depth of

holes, an additional factor of 2°~2 can be gained. This estimate looks too

optimistic but it does not contradict the laws of nature.
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