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Abstract. The average photon path-lengths of the emergent radiation from atmospheres in the

case of isotropic and Rayleigh scattering in different orders of scattering are compared. The

finite homogeneous plane-parallel atmosphere is illuminated by a parallel unpolarized beam

and only the external axial field of radiation is considered. The calculations show that the

impact of polarization on the average path-lengths is quite considerable, increasing towards

the larger ordersofscattering and decreasing towards optically thicker atmospheres. For small

angles of incidence and reflection, and for small orders of scattering (n < 15), the average

path-lengths of both the reflected and transmitted radiation in the case of Rayleigh scattering
are always smaller than those in the case of isotropic scattering, if only the atmosphere is

optically not very thick. For large angles of incidence and reflection the situation is vice versa.

As a by-product of the calculations we ascertained the asymptotic behaviour of the average

path-lengths which was quite similar for scalar and vector transfer. When increasing the

optical thickness of an atmosphere, the average path-lengths I;" approach the value n and

they do not depend on the angular variables any more. The smaller the order of scattering,
the smaller the optical thickness at which this starts to happen. While for the total radiation

emerging from optically thick atmospheres at 7 = 7 the average path-length is proportional
to Tš, the average path-length in different orders of scattering is a linear function of 79.

Key words: average photon path-length, finite atmospheres, polarization, order ofscattering.

1. INTRODUCTION

The order-of-scattering approach in the scalar radiative transfer is

well known. To the best of our knowledge the pioneer in this field was

King ['] who made approximate calculations to explain the brightness and

polarization of the blue daylight sky. This idea has been used by Ornstein

[2] to calculate the radiation field in the first orders in scattering both
in planar and spherical atmospheres. In his work he indicated that this
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approach was used by him in neutron transfer and published inProceedings
ofthe Amsterdam Academy (1936).

Later this method was used by Hammad and Chapman [*] to find the

first two orders of scattering of sunlight in a planar atmosphere. Van de

Hulst [*] considered the same problem, assigning the physical meaning to

Ambarzumian—Chandrasekhar functions X and Y. Having this meaning
in mind, van de Hulst obtained the expressions for single and double

scattering in a simple manner. The order-of-scattering approach has been

extensively exploited by Bellman et al. [°~®] and Ueno et al. [> I°], mostly
to solve the problems in radiation dosimetry.

Successive orders of scattering as a method for solving the radiation

transfer problems in planetary atmospheres has been described by Hansen

and Travis [*!], van de Hulst ['2], and Lenoble [**]. The last author gives an

impressive list of references. Hovenier [**] presented exact results for the

intensities of radiation emerging from an atmosphere in the first two orders

of scattering with polarization included. These results were generalized by
Wauben et al. ['°] who presented explicit formulae for internal radiation in

an atmosphere and who meticulously reported the special cases for equal
angles. Kuga ['®] described the third- and fourth-order solutions for the

vector radiative transfer equation not paying any attention to the case for

equal angles. However, this case is important when implementing the

method in practical calculations.

An important contribution to understand the behaviour of photons
scattered once and twice in a homogeneous plane-parallel atmosphere was

made by Irvine [}7]. He found the exact expressions of the path-length
distribution functions and the average path-lengths for these photons. He

also studied the asymptotic behaviour of the average path-length and

determined in a rigorous way that in the first two orders of scattering the

average path-length for outward radiation at the bottom of the atmosphere
is proportional to the optical thickness of the atmosphere.

Discussing the impact of polarization on the photon average path-
lengths in different scattering orders of the radiation emerging from an

atmosphere we rely on the papers by Fymat and Ueno [*® I°] (cf. Hansen

and Travis ['']). The atmosphere under consideration is assumed to be

finite, conservative, plane-parallel, and homogeneous.
The photon average path-length in different orders of scattering is

defined by the scattering and transmission matrices of the atmosphere,
and by their derivatives with respect to the optical thickness of the

atmosphere. As in the case of the scalar transfer [2°], we proceed from the

integro-differential equations for the scattering and transmission matrices
in different orders of scattering. Next we substitute all the integrals
in these equations by Gaussian sums and if we take into account the

symmetryrelations [*'], we obtain a set of 2N(2N+1) ordinary differential

equations where [V is the order of the Gaussian quadrature. Though these

equations are rather stiff (the larger the order of the quadrature, the stiffer

the equations), nevertheless the fourth-order Runge—Kutta method [??] did



357

work well if we only kept the step of integration small enough. The length
of the step was determined by the trial-and-error method. We tried to use

the methods with an adaptive step-size but without much success, since

these methods spent drastically long time taking very small steps near

70 = 0 in order to meet even the modest requirements of accuracy.

In the following we shall confine ourselves to the case of azimuthal

symmetry only. We have accepted Ivanov’s [**] notation: bold font is used

to denote 2 x 2 matrices (capital Roman characters) and two-component
vectors (small Roman characters).

Throughout this paper we use the (I, () representation and we assume

that the incident beam of radiation f is not polarized, i.e. f; = 1 and fy = 0.

2. RAYLEIGH-CABANNES SCATTERING

One of the possible ways to find the photon average path-lengths is to

start from the determination of the photon path-length distribution function

which describes the probability that a photon, contributing to the intensity
of the radiation at a certain depth in an atmosphere, has travelled an optical
path between [ and [ + di. In the scalar case the photon path-length
distribution functions p,, of the radiation, emerging at the upper and lower

boundaries of the atmosphere, are given by the following formulae ['?]

Pn(o, ,o,[) =

LÕUln[o, w ko, o(1 + 8)]/[(1 + 8)"Ln(0, i, pro, 7)l}, )

Pn(TO, —l, po, 1) =

L-—l{ln[’rOa —P Ko, TO(1 + S)]/[(l + s)nln(7—o7 —, Mo, TO)]}a (2)

where the operator L~! means the Laplace inverse transformation with

respect to the parameter s and J,(O, , o, 7o) is the intensity of the n times

scattered radiation, emerging from the atmosphere at the upper boundary
and 1,,(79, —4, 10, To) is the similar intensity at the lower boundary. Here,
To is the optical thickness of the atmosphere, p is the cosine of the angle
between the photon travel direction and the outward normal to the upper

boundary of the atmosphere, and 1 is the cosine of the angle between the

parallel beam of the incident radiation and the inward normal to the upper
boundary of the atmosphere. We may add that the first argument of the

intensity is the optical depth 7 at which the intensity is observed while

7 = 0 at the upper boundary of the atmosphere and 7 = 7, at the lower

boundary.
If we know the path-length distribution function, then the average

path-length can be easily found since it is the first moment of this

function. Unfortunately, this straightforward approach is very complicated
in practice because of the mathematical difficulties connected with the

inverse Laplace transform. However, the properties of the Laplace
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transform allow us to bypass this procedure completely as shown e.g. by
van de Hulst in ['2]. The formulae to calculate the average photon path-
length [,, of theradiation emerging through the boundaries of an atmosphere
for n times scattered photons are the following:

Oln,(0, , o, To)l+ To, Ll,
— —

nAN 05340

~
(70, 1, o) n

onaeto (3)

B oln I,(70,—4, Lo, To)
] To,[t — — ————2—;-n (To, 14, o) n

AL
(4)

As already mentioned, Egs. (1) and (2) are valid for scalar radiative

transfer. What are their counterparts in the case of polarized radiation? In

that case the intensity is described by a two-component Stokes vector (if
we consider the axial radiation field only)

In(Ta Iy MOaTO) ) , (5)in(Ta F Ko TO) 7 (Qn(T7 My Ko, TO)

where I, is the intensity proper of the n times scattered radiation and @,
characterizes the degree of polarization of the n times scattered radiation,
i.e. if @, = 0, then the radiation is not polarized.

It seems to be quite natural to generalize Eqgs. (1) and (2) for the case of

polarized radiation in such a way that the scalar intensity in these equations
is substitutedwith the first component of the Stokes vector which physically
is also intensity [24]. This means that Eqs.(l)—(4) retain their form also in

the case of the vector transfer.
It follows from Eqgs. (3) and (4) that all we need to know in order to

obtain the average path-lengths are the derivatives of the intensities of the

emergent radiation with respect to the optical thickness of the atmosphere.
These derivatives are readily found from the principles of invariance

originally formulated by Ambarzumian [?°] and further elaborated by
Chandrasekhar [*']. These principles appeared to be valid for polarized
radiation in different orders of scattering as well. If the finite atmosphere
is illuminated monodirectionally at the top, then for the intensity vector at

the optical depth 7 we have (Chandrasekhar [?!], Fymat and Ueno ['% I°])

in(T’ Ky Ko, TO) — in(o7 K, Ho, To. — T) GXp(—T/'u,O)
1 n-l »1

:

+a z/0 Sn—i(To 754 :u',)li(T> _,U'la Mo, TO)d.u’l’ (6)
i=]l

in(T) — H o, TO) — ln(oa —P Ko, To — T)
1 n—l 1

.

2) >/0 Sn—i(T, 1yK )(T, 1, Ko To) d, (7)
=1

where the scattering function S,, (79, y, 149) and the transmission function
T(70, i, £10) Which we shall need laterare defined in terms of the emergent
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radiation as follows:

.
(8)in(o,, o, T0) = @Sn(mu,uo),

:
(9)in(To, —H, /10770) = Z;Tn(To,.U, flo)-

Differentiating Egs. (6) and (7) with respect to 7, passing either to the

limit 7 = 0 or to the limit 7 = 7y, and making use of the boundary
conditions i,(O,x4, 9, 70) = 0 and i,(79, —4, 40, 7o) = O (there is no

scatteredradiation incident on the atmosphere) and the equation of radiative

transfer, we obtain the following equations:

Sy (10, i, tho) (1 - )———a — —+ T Sn T 3 , + P >+ d
?

1
A7y B o

(70, 15 p 10)+P (1, —po)d(n, 1)
]. 1

1 / / /
+ ž/o P(u, 4 )Sn-1(70,2 ko)du /u

1 1

T ž/o Sn—l(7-071u’7 :LL,)P(_/J’” _'u')d‘u'l/'u’

1222 p 1 p 1 Y Ll

+ Zz / / Sn—i—l(To7 My h )P(—'M » H )
=1 0 0

X Si(TO, ,U/”,/,1,())d,u”//ll”du,//,bl (10)

and

lw
= — —Tn(7O,4, o) + P(ps, —o) exp(—7o/p)d(n, 1)

OTy o

1 1
) 1 du!'/+ žexp(—']'o/'u,)/o P(,Uz„u/)sn—l(TO7/I'7:u'o) /.,L/,LL

1 1

+ ž/0 Tn—l(To7 My ,U,,)P(—,LL’, —/J,)d,Ll,’//J,,

J 722 p 1 p / iil+ 2Z/ / Tn-i-1(706,4 K)P (-p, p")
4=l 0 s 0

x Si(mo,u”, uo)du”'/u"du'/w'. (11)

In Eqgs. (10) and (11), d(n, 1) is the Kronecker delta function which is unity
if n = 1 and zero otherwise, and P (y, 1) is a superposition of the Rayleigh
phase matrix Pr and the phase matrix of the isotropic scalar scattering P;:

P = (1 - ¢)P; + cPp, (12)

where

P;=(6 8) (13)
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and

s (1- 3N2)(1 — .uš)) | (14)
Sl sl = S S Il o

P TPR:š( (Ižu2)(g—3uš) 3(1—?)(1— 16

Here c is the depolarization parameter which is zero if the scattering
is isotropic and unity if there is the Rayleigh scattering present in the

atmosphere.
Equations (10) and (11) are to be solved subject to boundary conditions

Sn(Ohu'))uO) — 0) (15)

for each order of scattering.

3. NUMERICAL RESULTS

In order to solve the system of Eqgs. (10) and (11), we replaced all

the integrals therein by a Gaussian quadrature formula of the order of N

(Chandrasekhar [2!], Bellman et al. [26]). As a result we obtained a set

of ordinary differential equations. The fourth-order Runge—Kutta method

(Press et al. [*2]) did work well though we had to keep the step of integration
rather small: 079 = 0.005. However, the first steps of integration were

definitely not very accurate (cf. Viik [?°]), to say the least. This means

that the results for optically very thin atmospheres (~ 1047p) were not

correct and we discarded them in our presentation. Fortunately enough, at

larger optical thicknesses the results stabilized and we could report relative

accuracy of the order of 10~
For all our calculations the order of Gaussian approximation was N =

15 and we went as far as fifty orders of scattering for the S matrix but the
main body of results was obtained forN = 25 and 7y < 10. The reason was

inadmissibly long time of calculations even on a computer SPARCstation

20.

We have compared the average path-lengths in different orders of

scattering in radiation emergent from an atmosphere at 7 = 0 and at 7 = 7

while the scattering was isotropic or governed by the Rayleigh—Cabannes
phase matrix. Though the order of scattering can only be an integer, for

better perception we joined the points with a smooth curve — we used the

version 3.3 b GLE package — as if the order of scattering were real (cf. van

de Hulst ['?]).
Figure 1 shows the values of /;} /n for almost normal reflection (u =

Ho = 0.993996 — this is the last zero of Pis(l — 2u)) against finite

atmospheres with isotropic and Rayleigh scattering. While for isotropic
scattering the curves are strictly monotonic over the whole range of

scattering orders considered, the respective curves forRayleigh scattering
may have two inflection points. Almost the same could be said about the

behaviour of [ (Fig. 2).



361

Fig. 1. Average photon path-lengths as functions of the order of scattering for almost normal

reflection against optically finite atmospheres.

Fig. 2. Same as in Fig. 1 for transmitted radiation.
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In order to estimate the differences between the average path-lengths,
we used the following formula

6:*: — (lž:,isotr — läßayl)/lä:,isotr' (17)

It appeared that in the case of atmospheres with moderate optical thickness

(7o < 4) the average path-lengths of the isotropically scattered radiation

are larger than those for Rayleigh scattering if only the order of scattering
is less than &~ 15. This difference is larger at optically thinner atmospheres,
reaching =~ 7% for 7 = 0.1. At the orders of scattering larger than ~ 15

the situation is opposite (Fig. 3) and the differences grow with the order of

scattering. For optically thickatmospheres (15 > 10) there is no difference

in average path-lengths for isotropic and Rayleigh scattering, at least for the

first 25 orders of scattering.
And again, almost the same pattern is present for the transmitted

radiation. However, the differences at small optical thicknesses and small

orders of scattering are more pronounced, reaching 8% for 7o = 0.1, and

these differences do not disappear even at 7o = 10 (Fig. 4).
The impact of polarization on the average path-lengths depends

essentially on the angles p and po (Figs. 5 and 6). For angles p = ü0 = 0.5

the average path-lengths of the scattered polarized radiation at 7 = 0 are

larger than those for the unpolarized radiation, and only for optically thick

atmospheres (7, > 10) the average path-lengths are equal, at least for the

orders of scattering less than 25.

For the same angles the average path-lengths of the transmitted

radiation show a similar behaviour. An exception occurs at optically thick

atmospheres where the average path-lengths of the transmitted unpolarized
radiation are larger than those of the polarized radiation.

The overall conclusion is that the larger the optical thickness, the

smaller impact polarization has on the average path-length. From the

physical viewpoint this conclusion is very transparent since each act of

scattering reduces the polarization. *
If we increase the optical thickness of an atmosphere, then the average

path-length of the emergent radiation at the upperboundary loses gradually
its dependence on the angular variables p and p since

o ol M
ete 18Tšlm 5 n

0 (18)

and, respectively,

Jiml =n. (19)

The lower the order of scattering, the sooner this isotropization takes place,
e.g. if for n = 3 we cannot distinguish between the average path-lengths at

different angular variables for 7; > 4, then for n = 25 the same situation

occurs at 7p > 9. There are no significant differences for vector transfer in

such a behaviour.
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Fig. 3. Relative differences in the average path-lengths for emergent radiation at T = 0 for

isotropically and Rayleigh scattering atmospheres as functions ofthe order ofscattering.

Fig. 4. Same as in Fig. 3 for transmitted radiation.
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Fig. 5. Same as in Fig. 3 for different angles of incidence and reflection.

Fig. 6. Same as in Fig. 5 for transmitted radiation.
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For the average path-lengths of both the unpolarized and the polarized
transmitted radiation at large optical thicknesses the following relation
holds:

l/n x 10. (20)

This result has been obtained in a rigorous way by Irvine [l7] for the first-

and second-order isotropic scattering but evidently it is more general than

that. This is completely different from the case of the radiation field with
all orders of scattering summed. In that case, according to Ivanov and

Gutshabash [*7], the average path-length of a photon emerging at 7 = 0

from an optically thick atmosphere is proportional to the optical thickness

of that atmosphere. For the transmitted photon the average path-length is

proportional to 7.

4. CONCLUSIONS

The results of our study are as follows.

1. On the basis of extensive scalar and vector order-of-scattering
calculations we have investigated the impact of polarization on the average

path-lengths. We have shown that this impact is substantial, increasing
towards the larger orders of scattering and decreasing towards optically
thicker atmospheres.

2. For small angles of incidence and reflection, and for small orders

of scattering (n < 15) the average path-lengths of both the reflected

and the transmitted radiation in the case of Rayleigh scattering are always
smaller than those in the case of isotropic scattering if only the atmosphere
is optically not very thick. For large angles of incidence and reflection the

situation is vice versa.

3. As a by-product of the calculations we have ascertained the

asymptotic behaviour of the average path-lengths which was quite similar

for the scalar and the vector transfer. At optically very thick atmospheres
the average path-lengths of the reflected nth order radiation approach
the value n and they do not depend on the angular variables any more.

The smaller the order of scattering, the smaller the optical thickness at

which this starts to happen. For the total radiation (all orders of scattering
summed) the average path-length of the radiation, reflected by an optically
thickatmosphere, is proportional to the optical thickness of the atmosphere.

4. While for the total radiation emerging from optically thick

atmospheres at 7 = 7, the average path-length is proportional to 7¢, the

average path-length in different orders of scattering is a linear function of

70-
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LÕPLIKU PAKSUSEGA ATMOSFÄÄRISTVÄLJUVATE
FOOTONITE KESKMISED LENNUTEED

Tonu VIIK

Homogeenset tasaparalleelset atmosfdidri valgustatakse paralleelse
polariseerimata kiirtekimbuga. Atmosfédrist viljuvate footonite keskmisi

lennuteid vorreldakse erinevates hajumisjédrkudes juhtudel, kui atmosfééris

toimub isotroopne hajutamine voi hajutamine Rayleigh’ seaduse jirgi.
Arvutused niitavad, et polarisatsiooni moju footoni keskmise

lennutee pikkusele on kaunis suur, kasvades suuremate hajumisjiarkude
suunas ja vihenedes atmosfddri optilise paksuse kasvades. Viikeste

langemis- ja peegeldumisnurkade ning viikeste hajumisjirkude puhul
(n < 15) on nii atmosfédrilt peegeldunud kui ka atmosfääri läbinud
footonite keskmised lennuteed Rayleigh’ hajumise puhul alati vaiksemad

kui isotroopse hajumise korral, kui ainult atmosfiir pole optiliselt liiga
paks. Suurte langemis- japeegeldumisnurkade puhul on asi vastupidi.



Arvutuste korvaltulemusena tehti kindlaks, et kui atmosféiri optiline
paksus on viga suur, siis atmosfédri iilemiselt pinnalt (sellelt, millele

langeb paralleelne kiirtekimp) viljuvate footonite keskmised lennuteed /;F
lahenevad hajumiskordsust nditavale suurusele n ega sOltu enam nurga-
muutujatest. Mida viiksem on hajumiskordsus, seda viiksemate optiliste
paksuste puhul selline kditumine algab. Lébiva kiirguse puhul ilmneb aga
huvitav fakt: kui iile kdikide hajumisjdarkude summeeritud kogukiirguse
puhul keskmine footoni lennutee pikkus on vordeline atmosféiri optilise
paksuse ruuduga, siis erinevates hajumisjirkudes on footoni lennutee

pikkus vordeline vaid atmosfiiri optilise paksusega.
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