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Abstract. Nonhydrostatic acoustically filtered equations of motion of nonviscid fluid are

derived in pressure coordinates. A complete set of nonhydrostatic nonlinear equations for

ideal fluid in pressure coordinates serves as the starting basis. These equations are linearized

and transformed to a convenient for filtering form. Acoustic filtering is achieved in the limit of

the infinitely high sound speed, ¢, — 00. The filtered model lacks acoustic wave solutions

but maintains without loss of accuracy all slow processes, including buoyancy waves. The

obtained in this way linear model is complemented to a nonlinear set by the inclusion of

incompressible advection terms in the pressure space. The final equations may describe

slow processes from local turbulence to planetary-scale waves. Still, the main domain of the

application of the model is mesoscale dynamics.

Key words: atmospheric dynamics, Lagrangian function, Hamilton’s principle, pressure
coordinates, nonhydrostatic equations, optimum acoustic filtering.

1. INTRODUCTION

The idea to use pressure related coordinates for nonhydrostatic (NH)
dynamics is not new. A pressure coordinate (p-coordinate) acoustically
filtered NH model was first proposed by Miller [!] and Miller and

Pearce [?]. The Miller—Pearce model (MPM) has been widely used in

numerical modelling [>~°]. A variant of the numerical package, developed
in [°], is presently in use at Tartu Observatory. Though at first sight
the p-coordinate presentation in combination with the NH assumption
looks exotic and sophisticated, its incontestable advantage consists in

ability to treat NH processes of shorter mesoscale (I, ~ 102-10° m), and

hydrostatic processes of longer mesoscale (I, ~ 10*~10° m) and synoptic
scale (I, ~ 10°~107 m) in the framework of unified formalism.
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The main assumption of the MPM is the approximation of

incompressibility of motion in p-space, which filters sound waves:

Ow
Vv + — =

9
0. (I1

Here v and w = dp/dt are the horizontal wind vector and the vertical speed
of the air-particle in the p-space. The assumption (I 1 enables filtering
of acoustic waves, unwanted in slow dynamics, in a most straightforward
manner. As the same assumption is exact in the hydrostatic limit, (I1

presents an extrapolation of the main characteristic feature of primitive
equations to the mesoscale.

Here we introduce a different acoustically filtered NH model which

rejects the hypothesis (I1 Though the approximation (I1 will be used at

the final stage of the model development for the introduction of nonlinear

momentum advection, it is not used for wave filtering.
The model we develop is based on the complete set of NH equations in

p-coordinates [®]. The filtering proceeds as follows. At first the initial set of
NH p-coordinate equations is linearized. The filtering is carried out in the
linear model. Finally, the model obtained is complemented to a nonlinear

filtered model with the maintenance of energy conservation.

2. LINEAR NH MODEL IN p-COORDINATES

2.1. Linearization of equations of paper [°] according to the hydrostatic
equilibrium state, characterized by the mean temperature, To(p), yields
equations

ž—zt, = v + HO%, (1a)

% = -3 (1b)
ÕÕ—:; = -9Vz, (1c)

%’%, = — š(V-v + dw/dp), (le)

it (1f)

prz—ž(%%%—;-%). (1g)
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Here v, = dz/dt is vertical velocity, 2z’ and 7" represent isobaric height and

temperature fluctuations, p’ = p — 1/g is the p-space density fluctuation

from its equilibrium constant value = 1/g, and p, is the ground surface

pressure fluctuation from the mean pressure distribution at the ground py.

The parameter Hy = RT;/g presents the height scale for hydrostatic
pressure, 5

Ti = ETO — P%
Cpy dp

is the stability parameter ("stability temperature") of the background state,
and () represents the given thermal forcing.

2.2. Boundary conditions. Conditions at the lateral boundaries are the

same as in Cartesian coordinate models and do not present special interest

in the context of the present study. The main differences from the ordinary
model occur in the "horizontal"conditions at the top and at the bottom. The

domain occupied by the atmosphere in the p-space is

U ete0200 < &, I < . (2)

The boundary conditions at the bottom and top are

where h(x) is the ground surface height above sea level.

2.3. Diagnostic equation for w. Model (1) presents a closed system
consisting of eight equations for eight fields 2/, v;, vy, v,, T, p/, p}, and
w. All quantities here, except w, are prognostic fields, and system (1)
includes a single diagnostic Eq. (1f). This equation should be used for
the determination of the diagnostic field w. As (1f) does not include w

explicitly, the only way to proceed is to differentiate (1f) by £ and eliminate

time derivatives by the help of other equations. The result is an explicit
equation for w

w p ov, Q
— == —-V-v 4+ —, 4ap Ho Op

Y

To (4)
where

= /0
This relation presents the linearized pressure tendency equation in

p-coordinate representation.

2.4. The reduced linear system. The obtained diagnostic Eq. (4) along
with Eq. (1g) enables us to get from (1) a reduced set of equations which

is closed according to 2', v,, v, 7", and p’, and does not include p’ and w

(though equations for these fields, (1e) and (4), remain valid)

106 —1 [1 0 q]oD=— |— Z -Vv+2|, (5a
c2dt — gHo [Ho (a+pöp)v Y (sa)
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We have introduced nondimensional fluctuative fields inplace of 2’ and

T!: ; ; ;
> T' T;z'!

=2, n=—- —. (6)
Ho To ToHo

2.5. Wave equations. It is easy to get two second-order equations for ¢
and 7, differentiating (sa) and (sb) according to the time and eliminating
the first-order time derivatives with the help of (s¢) and (sd):

1 97 0 0
H2 SE
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0 R 00
- (päšm)„: 2a (7a)

1 o 0 RTy 00(N2s+l)U+(äšp—a>€=š2—žä, (7b)

where ¢, = y/RTy/aisthe sound speed and N=/ RT;/H, represents the

Viisila frequency. These equations can be employed for modelling linear

wave processes in p-coordinate presentation in a general, nonfiltered case.

2.6. The Lagrangian function and energy. For the present study the

significance of wave equations is that they have a Lagrangian function

£ = 31 - Bee? - e + MVO

+ [(%p — a)C + nr} - (8)

On the one hand, the existence of the Lagrangian guarantees energy
conservation. On the other hand, with the help of Lagrangian formalism
it is easy to get filtered versions of the model which are still energy-
conserving. Explicitly the energy density can be presented for model (5)
as

2 172 T 2
e =

l .g__.__}{O_CQ + hnz +V2 + /Už . (9)
21 c2 T
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The first two terms present potential energy which the air particle has due to

the isobaric height and temperature fluctuations, the remaining two terms

are kinetic energy.

3. ACOUSTIC FILTERING

For slow atmospheric movements with a small Mach number,

M =ÜW T 1; (10)

where U is the characteristic amplitude of the velocity, it is reasonable to

simplify model equations in the way they do not include acoustic-wave

solutions any more. This procedure is called filtering.

3.1. Filtering of linearized equations (5). Thephysical basis and proof for

acoustic filtering can be received from the scale analysis of the Lagrangian
(8). It is easy to verify that the first term in (8) is small in comparison
with others in all scales if the Mach number is small and, thus, it can be

neglected. Formally filtering is straightforward with the help of the limiting
process

Ca —/ OO (11)

in Eq. (sa), which yields

1 0 OTho — )|v, -V-v+2=O. 12Ho(a+põp)v v

T
(12)

This equation along with other Eqs. (sb)—(se) (which did not change at

filtering) presents the basic acoustically filtered set of linear equations in

p-coordinates. The wave equations for the filtered model can be obtained

from (7) with the help of the same formal filtering procedure (11) and they
possess the Lagrangian function

£ = %{— ) + HSCP + [(%p -a) +nH . (8)

As a consequence, filtering does not harm energy conservation. The energy

density can be deduced from (9), using passage (11):

—

1 /(RIS» 2 2 Ie—ž(—fn + +o%]. (9')

Equation (12) presents the main diagnostic relation in the filtered
model. In nonstationary problems it presents the basic equation for (
determination, simultaneously it can be used for the calculation of the

vertical speed v,. After filtering is carried out, it is impossible to return
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from the field n back to the ordinary temperature fluctuation 7" and the

hydrodynamic content of 7 alters. In the filtered model it has the content

of the relative density fluctuation. To prove this feature, we note that from

Egs. (4) and (12) a relationship follows

Ow T;v, Q
Vv+p . oo ovt

Õp T()HO
+

T

The comparison of this equation with (sb) exhibits that 7 satisfies the
condition - ?

on ow

ä—V'V—a—p—O.
That means, 7 evolves according to the same equation which is valid for

—gp' in the nonfiltered model.

3.2. The inclusion of advective processes into the filtered model
can be achieved in the simplest manner by modelling them as quasi-
incompressibles in the p-space. For that in the adjusted model the local time

derivatives /0t should be replaced by the individual derivatives

d 0 0

ä—ä-l-V-V-l-wsõ—p, (13)

in momentum Egs. (s¢) and (sd). Here wj is the vertical p-velocity of the

incompressible flow:
:

Ow,
"Õ—p—l'V'V—O. (14)

At the same time, (sb) should be maintained in its initial linear form, as 7,

having the content of small relative density fluctuations, is not redistributed
in space advectively. The resulting filtered equations are

fil_o(a+ps%>vz—v-v+%:o, (15a)

%% =- % + O/To, (15b)

%zg[(%p—a)g+n] ) (15¢)

‘:l_‘; = —gH,V¢, (15d)

% — [ž (%% oA %)L:poL
Thus, our model treats linear processes as compressible in the p-space,

while nonlinearprocesses are approximated as incompressible. The energy

density for this nonlinear model coincides with the energy density of the

linear acoustically filtered case (9).
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4. CONCLUSIONS

We have developed a version of an acoustically filtered set of model

equations for atmospheric dynamics. Unlike common models, such as the

MPM in p-space or anelastic models in ordinary Cartesian coordinates,
our model does not use incompressibility for wave filtering. Certainly, the

quality of the model should be tested in further experiments. Nevertheless,
it is optimal at least in one respect: in linear case it presents the best

approximation to the nonfiltered equations.
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ATMOSFÄÄRIDÜNAAMIKA MITTEHÜDROSTAATILISED
AKUSTILISELT FILTREERITUD VÕRRANDID

RÕHUKOORDINAATIDES

Rein ROOM, Anu ULEJOE

On kirjeldatud atmosféiridiinaamika akustiliselt filtreeritud mudelvor-

randite optimaalset tuletusalgoritmi rohukoordinaatides. On ldhtutud t66s

[®] tuletatud tiielikest mittelineaarsetest hiidrodiinaamika võrran-

ditest rohukoordinaatides. Need vorrandid on lineariseeritud ja toodud

kujule (5), kus akustiline filtreerimine on lihtsaimal viisil teostatav



piiriileminekuga 10pmata suurele hdilekiirusele, ¢, — 00. Tulemusena

vidheneb vorrandite ajaline jark kahe vorra ning kaovad hiilelained. Saa-

dudakustiliselt filtreeritud lineaarsedvorrandidon tdiendatud advektiivsete

liikkmete lisamisega tagasi mittelineaarseteks. Seejuures on ldhendatud
advektsiooni mudeliga, mis vastab kokkusurumatule voolamisele rohu-

koordinaatide ruumis. Nii saadavas filtreeritud mittelineaarses mudelis

(15) séilib energia. Mudel annab parima ldhendi filtreerimata diinaamikale

lineaarsete protsesside piirjuhul.
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