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Abstract. In this paper the multivariate minimal distribution (lower Fréchet bound) is

discussed. Using different definitions of the multivariate minimal distribution, given by
Dall’Aglio (Inst. Stat. Univ. Paris, 1960, 9), and by Kotz and Tiit (Acta et Comment. Univ.

Tartuensis, 1992, 942), some useful properties of this distribution are deduced. The other

purpose of this paper is to construct an example of a discrete k-variate minimal distribution

for any k > 2. The distributionconstructed has a support consisting of k equiprobable points
and is unique (up to the scaling constant a and some special transformation ofcoordinates).
The distribution has the minimal possible correlation for a k-variate distribution with equal
marginals and hence is in some sense the globally minimal k-variate distribution.
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1. INTRODUCTION

For a bivariate random vector (X,Y) it is possible to measure not

only the strength but also the direction of dependence (correlation). If
the univariate distributions Py and Py (having the distribution functions

Fi (a:) and F» (y), respectively) are fixed, then there exists a set II(Px, Py)
of bivariate distributions with marginals Px and Py. This set has two

so-called Frechet bounds (see [l]). The upper Frechet bound or maximal
distribution is defined by its distribution function F'*+(z,y),

F*(z,y) = min(F(z), F>(y)) (1)

and the lower Fréchet bound or minimal distribution has the following
bivariate distribution function

F~(z,y) = max(o, (Fi(z) + F2(y) —1)) (2)
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(see [%]). The distributions P~ andP defined via F~(z,y) and F'*(z,y)
have respectively the minimal and the maximal correlation coefficient r~

and r* for given marginals,

sBB ST

where always the following natural condition is satisfied

-I<r”<o<r*<l.

The problem, how to generalize the concepts of minimal and maximal

distributions when they do exist, and which are their properties in the

multivariatecase, has excited statisticians during the last fifty years. Below

we will regard several properties of maximal and minimal multivariate

distributions and construct one simple example of a k-variate minimal

distribution, k > 2.

2. MAXIMAL DISTRIBUTION

LetP, ...,
P be given univariate distributions having the distribution

functions Fi(z), ¢ = 1,...,k, andlet 11(P,..., P) be the class of all

k-variate distributions with marginal distributions Py, ...,
P;. The concept

of maximal distribution can easily be generalized for any dimensionality.
Its distribution function F'*(zq,..

~ zx) or the upper Fréchet bound of the

set II can be defined by the following formula, generalizing the formula (1):

F*(%1,.--,%x) = min/Fi(zl),---B (o) (3)

The k-variate maximal distribution always exists as demonstrated in [> *].
Let P* be a k-variate maximal distribution defined by its distribution

function F'*(-) (see [*]). From the same formula it is easy to deduce several

important properties of the maximal distribution.

Property 1. For every h(ll<h<k) all h-variate marginal
distributions ofPt are h-variate maximal distributions corresponding to

their marginals P, ...,P;,.

As this fact holds in the case h = 2, too, then from here the second

property of the maximal distribution follows.

Property 2. All correlations of the maximal distribution are maximal

r;;, i=11,...,k-l, j=i+l,...,k.

From the formulae (1) and (3) also the third property of the maximal

distribution follows.

Property 3. The maximal distribution is uniquely defined by its bivariate

marginals.
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3. MINIMAL DISTRIBUTION

It is tempting to generalize the concept of minimal distribution for the

k-dimensional case as well but here some serious difficulties arise.

Dall’Aglio (see [?]) has defined the minimal distribution using a

generalization of the formula (2),

F=(zl,...,zx) = max[o, (Fi(zl) +
...

+ Fx(ze) — (k= 1))]. '(4)

The problem is that the formula (4) does not always define a distribution

function (see [°~7]). Dall’Aglio in [*®] has found the necessary and

sufficient conditions for marginals P; so that F'~(-) defined by (4) would

be a distribution function. Let us give his result in the following.

Theorem 1. The minimal distribution defined by the function (4) as its

distribution function exists ifand only if one of thefollowing conditions is

satisfied:
Fi(al+) + ...+ Fr(ag+) > k-1 (5)

or

Fy(b)) +
...+ Fi(by) < 1, (6)

where

a; = inf[r:F(z) > 0]

and

b; = sup[z : Fj < 1.

From the formula (4) it follows that if the minimal distribution exists,
then it is unigue. It is easy to see that in this case the properties similar to

those of maximal distributions hold also for minimal distributions.

Property 4. For every h (1 < h < k) all h-variate marginal distributions

ofP~ are h-variate minimal distributions corresponding to theirmarginals
Bl oR

Property 5. All correlations of the minimal distribution are minimal

Tij»t=l,...,k-1, j=i+l,...,k.

Obviously, the minimal distribution should be defined as a distribution

having the properties 4 and 5 deduced above. Kotz and Tiit (see [?]) used
this definition of the minimal distribution (the lower Frechet bound) and

regarded specially the case of egual marginals. In this case the minimal

distribution has some additional properties.

Property 6. The multivariate minimal distribution having egual marginals
is exchangeable (see ['°]).

Property 7. In the case of equal marginals of the k-variate exchangeable
distribution the minimal possible value of the correlation coefficient is

—

—1
g (7)
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From this result ofKotz and Tiit (see [°]) we can deduce the following.

Theorem 2. A necessary condition for the existence of the k-variate

minimal distribution having equal marginals P, = Py, i = 1,...,k, is

that the minimal correlation coefficient v~ (Py, Py) satisfies the condition

r~(Py, Py) >
o
k-1

(8)

From Theorem 2 some corollaries follow.

Corollary 1. The minimal distribution is degenerated in the (k—l)-variate
spaceR*~l that is orthogonal to the principal diagonal ofthe k-variate unit

cube.

The proof of this property is given in [°] for the case of the normal

distribution. The proof does not depend essentially on the underlying
distribution, it does depend on the properties of the correlation matrix and

corresponding random vectors only.

Corollary 2. For every univariate distribution Py from the condition (8)
the highest dimensionality k can be calculated so that there exists the k-

variate minimal distribution having marginals Py, but the (k + 1)-variate
minimal distribution with the same marginals does not exist.

Corollary 3. For equal and symmetric marginals only bivariate minimal

distributions exist.

From the conditions of Dall’Aglio (see [* ®]) and (8) it follows that
for the majority of commonly used univariate marginal distributions the

multivariate minimal distribution does not exist at all. If the minimal

multivariate distribution exists, it should have quite a special shape. In the

following part of the paper an attempt is made to find a simple construction

for a family of multivariate minimal distributions.

4. EXAMPLE OF A k-VARIATE MINIMAL DISTRIBUTION

We are going to construct a simple k-variate minimal distribution. Let &

be arbitrary but fixed. First of all we have to construct the suitable marginal
distributions. The easiest way is to use the equal marginals, hence we have
to construct at first the common univariate marginal distribution F;. Let us

build the distribution F; as a discrete one. Then the simplest way is to use

the Bernoulli distribution. Let the support of the distribution consist of a

pair of points [O, a], where a > 0 is an arbitrary number, P(a) = p and

P(0) = 1 — p are probabilities.
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In this case the univariate marginal distribution function is the

following:
0, £ z<o

Fo(x)z{l—p, if o<r<a (9)
1, f r >a.

In addition, this distribution must satisfy the necessary and sufficient
conditions of Dall’ Aglio (5) or (6). Let us choose the second one. From

this condition it follows that the probability p must satisfy the condition

1

Now let us define a discrete k-variate distribution P~ using the marginal
distributions defined via (9). Let the support of the distribution P~ consist
of £ 4+ 1 points in the k-variate space so that every point is situated on a

different (ith) coordinate axis (¢ = 1,
..., k) at the distance a from the zero

point and has the probability p. The remaining probability mass ¢ = 1 —kp
corresponds to the zero point.

The values p and g should be chosen in such way that all bivariate

marginals were minimal, or, what is the same, so that the correlation

coefficients would have their minimal value (8), if possible. Using the

definition of the correlation coefficient

e JDXDX;= pp 1-pJDX;:DX; p

(t=1,...,k—1, j=1i+1,...,k), we see that the correlation coefficient

r(Po, Py) will have the minimal possible value when

1

and hence g = 0. In this case all correlation coefficients of the distribution
P~ have the minimalpossible value (7) and the distribution P~ defined via

Egs. (9) and (10) satisfies the following properties.

Property 8. All correlation coefficients defined by the bivariate marginals
ofthe distribution P~ equal to k———il and hence are the minimalpossible ones

for a k-variate distribution with equal marginals.

Property 9. The support of the distribution P~ consists of k points,
one on every coordinate axis, and the distribution is degenerated on the

(k — 1)-variate hyperspace R¥~! ofthe k-variate space. This hyperspace
is orthogonal to the main diagonal of the unit cube in the k-variate space.

Property 10. The distribution is exchangeable.

The distribution P~ constructed is the globally minimal k-variate
distribution since there does not exist any minimal k-variate distribution

having all correlations less than the correlations of the distribution P~.
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MITMEMÕÕTMELINE MINIMAALJAOTUS

Hele-Liis HELEMAE, Ene-Margit TIIT

On kasitletud mitmemddtmelist maksimaal- ja minimaaljaotust ning
eriti viimase olemasoluga seotudkiisimusi. Esimene selle moiste méaratlus

parineb Dall’ Agliolt (1960), kes esitas minimaaljaotuse definitsiooni (4)
jaotusfunktsiooni kaudu, kuid tema enese esitatud tarvilikest tingimustest
selgub, et niisugune mitmemoddtmeline minimaaljaotus eksisteerib vaid

kiillalt kitsendavate tingimuste tididetuse korral.
Alternatiivse minimaaljaotuse definitsiooni on andnud Kotz ja Tiit

(1992), kasutades minimaaljaotuse méadratlemiseks selle kahemdotme-

lisi marginaaljaotusi. Kéesolevas artiklis on esitatud rida mdlemast
definitsioonist tulenevaid minimaaljaotuse omadusi.

Samuti on toodud maksimaalselt lihtne diskreetse k-mõõtme-

lise minimaaljaotuse konstruktsioon, mis on rakendatav suvalise antud k

korral. Esitatud jaotus omab iihtlasi minimaalsetvoimalikkukorrelatsiooni

k-dimensionaalse juhu jaoks, olles sellega n.-6. globaalselt minimaalne.


	b10720984-1996-4 no. 4 01.10.1996
	Chapter
	EESTI TEADUSTE AKADEEMIA TOIMETISED PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES
	FÜÜSIKA MATEMAATIKA PHYSICS MATHEMATICS
	ON RIGHT INVERTIBILITY OF RECURSIVE NONLINEAR SYSTEMSª
	MITTELINEAARSETE REKURSIIVSETE SÜSTEEMIDE PAREMALT PÖÖRATAVUS

	THE METHOD OF FINITE DIFFERENCES FOR AN INVERSE PROBLEM RELATED TO A ONE-DIMENSIONAL VISCOELASTIC EQUATION OF MOTION
	ÜHEMÕÕTMELISE VISKOELASTSE KESKKONNA LIIKUMISVÕRRANDIGA SEOTUD PÖÖRDÜLESANDE LAHENDAMISEST DIFERENTSMEETODIL

	MULTIVARIATE MINIMAL DISTRIBUTIONS
	MITMEMÕÕTMELINE MINIMAALJAOTUS
	NONHYDROSTATIC ACOUSTICALLY FILTERED EQUATIONS OF ATMOSPHERIC DYNAMICS IN PRESSURE COORDINATES
	ATMOSFÄÄRIDÜNAAMIKA MITTEHÜDROSTAATILISED AKUSTILISELT FILTREERITUD VÕRRANDID RÕHUKOORDINAATIDES

	RESEARCH INTO ATMOSPHERIC DYNAMICS AT TARTU OBSERVATORY
	ATMOSFÄÄRIDÜNAAMIKAALASEST UURIMISTOOST TARTU OBSERVATOORIUMIS
	PHOTOLUMINESCENCE AND RAMAN SCATTERING STUDY OF NITROGEN-DOPED DIAMOND FILMS
	Fig. 1. The Raman scattering spectrum of the nitrogen-doped CVD diamond film with a thickness of 2 um deposited on the Si substrate. a, spectrum of the as-deposited film; b, spectrum of the same film after neutron irradiation at a dose of 10'® n/cm?. Excitation at 514 nm with 50 mW focused in a spot of a few micrometres.
	Fig. 2. Photoemission spectra of the nitrogen-doped CVD diamond film, excited at 514 nm with an intensity of 120 mW/cm*. a, as-deposited film; b, sample irradiated with neutrons at a dose of 10!Š n/cm*; c, sample after neutron irradiation and subseguent annealing at 800°C for 1/2 hour. Arrows ] and 2 indicate the positions of Raman scattering lines of graphitic carbon.

	FOTOLUMINESTSENTSI JA KOMBINATSIOONHAJUMISE UURINGUD LÄMMASTIKUGA LEGEERITUD TEEMANTKILEDES
	DIFFUSION-CONTROLLED PHASE SEPARATION INA La2CuO4+ð FILM
	Fig. 1. a, the resistance as a function of 1/T for La,CuQ,, 5 after annealing at 7, = 250 K. Dashed and solid lines are fits to (1) and (2), respectively. b and c are relative deviations of the data from the best-fit line.
	Fig. 2. The normalized resistance as a function of T, at various temperatures.
	Fig. 3. The temperature dependence of resistance measured after annealing at T,. To display the annealing effect, all dependences are normalized to the one shown with a solid line in Fig. la. The fittings to (2) with additional assumption (i) are shown with solid lines.
	Fig. 4. The fitting parameters A, B, and C as a function of 7. (O), (V) and (O), (A) denote the results of the fit with assumptions (i) and (ii), respectively.

	DIFUSIOONIST SÕLTUV FAASIDE ERALDUMINE La2CuO4+ð -KILES
	AVERAGE PHOTON PATH-LENGTH OF RADIATION EMERGING FROM FINITE ATMOSPHERE
	Fig. 1. Average photon path-lengths as functions of the order of scattering for almost normal reflection against optically finite atmospheres.
	Fig. 2. Same as in Fig. 1 for transmitted radiation.
	Fig. 3. Relative differences in the average path-lengths for emergent radiation at T = 0 for isotropically and Rayleigh scattering atmospheres as functions of the order of scattering.
	Fig. 4. Same as in Fig. 3 for transmitted radiation.
	Fig. 5. Same as in Fig. 3 for different angles of incidence and reflection.
	Fig. 6. Same as in Fig. 5 for transmitted radiation.

	LÕPLIKU PAKSUSEGA ATMOSFÄÄRIST VÄLJUVATE FOOTONITE KESKMISED LENNUTEED
	LÜHITEATEID SHORT COMMUNICATIONS

	HOW TO DESIGN A HIGH-TEMPERATURE PERSISTENT SPECTRAL HOLE BURNING OPTICAL MEMORY
	WHAT CAN A DNA MOLECULE AS A MESSAGE COMPRISE?
	INSTRUCTIONS TO AUTHORS
	Untitled

	COMMENTS ON THE INSTRUCTIONS TO AUTHORS: ILLUSTRATIONS
	Chapter
	AASTASISUKORD
	CONTENTS OF VOLUME 45 JAHRESINHALT



	Illustrations
	Fig. 1. The Raman scattering spectrum of the nitrogen-doped CVD diamond film with a thickness of 2 um deposited on the Si substrate. a, spectrum of the as-deposited film; b, spectrum of the same film after neutron irradiation at a dose of 10'® n/cm?. Excitation at 514 nm with 50 mW focused in a spot of a few micrometres.
	Fig. 2. Photoemission spectra of the nitrogen-doped CVD diamond film, excited at 514 nm with an intensity of 120 mW/cm*. a, as-deposited film; b, sample irradiated with neutrons at a dose of 10!Š n/cm*; c, sample after neutron irradiation and subseguent annealing at 800°C for 1/2 hour. Arrows ] and 2 indicate the positions of Raman scattering lines of graphitic carbon.
	Fig. 1. a, the resistance as a function of 1/T for La,CuQ,, 5 after annealing at 7, = 250 K. Dashed and solid lines are fits to (1) and (2), respectively. b and c are relative deviations of the data from the best-fit line.
	Fig. 2. The normalized resistance as a function of T, at various temperatures.
	Fig. 3. The temperature dependence of resistance measured after annealing at T,. To display the annealing effect, all dependences are normalized to the one shown with a solid line in Fig. la. The fittings to (2) with additional assumption (i) are shown with solid lines.
	Fig. 4. The fitting parameters A, B, and C as a function of 7. (O), (V) and (O), (A) denote the results of the fit with assumptions (i) and (ii), respectively.
	Fig. 1. Average photon path-lengths as functions of the order of scattering for almost normal reflection against optically finite atmospheres.
	Fig. 2. Same as in Fig. 1 for transmitted radiation.
	Fig. 3. Relative differences in the average path-lengths for emergent radiation at T = 0 for isotropically and Rayleigh scattering atmospheres as functions of the order of scattering.
	Fig. 4. Same as in Fig. 3 for transmitted radiation.
	Fig. 5. Same as in Fig. 3 for different angles of incidence and reflection.
	Fig. 6. Same as in Fig. 5 for transmitted radiation.

	Tables
	Untitled




