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Abstract. An inverse problem related to a one-dimensional linear viscoelastic equation of motion
is transformed to a system of hyperbolic and second kind Volterra equations. The obtained system is
discretized by the use of the method of finite differences. The convergence of the method is proved.
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1. INTRODUCTION AND PROBLEM FORMULATION

In paper [!] a method based on the technique of finite differences was
applied to an inverse problem for the reconstruction of two relaxation
kernels of one-dimensional quasilinear viscoelastic media. In the present
work we shall prove the convergence of this method in a simpler, linear
case.

We consider the oscillation of the linear homogeneous viscoelastic rod,
which is governed by the following equation of motion (cf. [']):

t
B / Bl Badm tritcr vl g i
0
(z,7) € D=10,X]% 10,1}

Here R is the relaxation kernel, U — displacement, and F' — density of
external forces. We add the initial conditions:

U(z,0) = A(z), U(z,0) = B(z), 0<z <X, (1.2)
and the homogeneous boundary conditions:
L(0,1),. = ULX. 1) =0, O £S .1, (1.3)

(1.1)
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Also we introduce the stress—strain relation at the endpoint 2 = 0 of the rod:
t
Uz(0,1) — / Rt — s)U;(0,s)ds = G(t), 0<t<T. (1.4)
0

Here G and U, stand for the stress and the strain, respectively.

Now we formulate the following inverse problem: on the ground of the
given functions F, A, B, G and the scalar a > 0, determine the pair of
unknown functions (R, U) from the conditions (1.1)—(1.4).

The problem (1.1)—(1.4) was theoretically studied in [2]. Assuming the
functions F, A, B, G to be smooth enough and A’(0) to be nonzero, it was
proved that (1.1)—(1.4) admits a unique (local in time) solution which is
locally stable with respect to perturbations of the given data in certain
spaces involving derivatives.

The plan of our paper is as follows. Differentiating the problem
(1.1)—(1.4), we derive a system containing a hyperbolic equation and
Volterra equations of the second kind. Thereupon we apply the method
of finite differences to this system and prove a stability theorem for the
discrete problem. Particularly, the convergence of the method of finite
differences follows from this theorem. Finally, we discuss some questions
related to the ill-posedness and the regularization of the problem under
consideration.

2. DIFFERENTIATED PROBLEM
Theorem 1. Let F € C3(D), A,B € C°[0,X],G € W2>Y0,T)
and let the problem (1.1)—(1.4) have a solution (R,U) € W11(0,T) x

C3(D). Assume that A'(0) # 0 and F is vanishing in neighbourhoods of
the endpoints x =0, z = X. Define

U =Uszs, ¢ = Ups(0,?), 7 =R 2.1)

Then the quadruple (u, ¢, R, r) is a solution of the following differentiated
problem:

t
gigant / R SHih oD =batisie, B F3, 1y
0

(e, (2.2)

wz,0) = az), w(z,0)=p), 0<z<X, (2.3)

uz(0,t) = ug(X,8) =0, 0<t<T, 2.4)

t
o) = % [U(O, &= / £t —9)u(0, 8)dshux Ot s T, (2o
0
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t
RE) = / r(s)ds + p, 0<t<LT, (2.6)
0

t
r(t) = £ [ —9(@®) + o) — k1 R(t) - / Pt - S)R(S)db’] ;
0

Ko
0.t <xl' 2.7)
Here
f = Fzz:m7 o, = A”,, /3 = B”I, Ji= GH)

} ! ) ot (2.8)
ko = A(0), K =B(0), p= K—O(G 0) = K1).

Proof. Equation (2.2) and initial conditions (2.3) immediately follow from
(1.1) and (1.2). The boundary conditions (1.3) yield Ui (0,t) =
Uu(X,t)=0, 0 < t < T. This equality together with the vanishing
conditions about F' imply that the right-hand side of (1.1) is equal to zero
if z =0orz = X. Thus, Eq. (1.1) turns out to be a homogeneous Volterra
equation of the second kind with respect to Uz (z.-) if z = O or z = X.
Consequently, we have

Uzz(0,8) = Uza(X,1) =0, 0<t<T, (2.9)

which in turn yields U;;4:(0,%t) = Uzz:(X,t) = 0. Now we see that Eq.
(1.1) differentiated two times by x has also the vanishing right-hand side
if z = 0 or z = X. Hence, we have homogeneous Volterra equations of
the second kind for the functions U, (0,%) and Uzzz,(X, 1), too. This
implies

Uzzz2(0,t) = Uzgae(X,8) =0, 0<t<T.
Since u = U, we obtain the boundary conditions (2.4).

Differentiating the formula (1.1) with respect to x and setting = equal
to zero, we immediately obtain (2.5). Moreover, computing a derivative
from the expression (1.4) and setting ¢ = 0, we deduce the formula
R(0) = pfor the initial value of R. Consequently, the formula (2.6) holds as
well. Finally, differentiating the condition (1.4) two times, we immediately
derive Eq. (2.7). Theorem is proved. [

As we see, the obtained system (2.2)—(2.7) contains the hyperbolic
Eq. (2.2) for u and the Volterra equations of the second kind (2.5),
(2.6), and (2.7) for ¢, R, and r, respectively. Solving the problem (2.2)—
(2.7), we automatically determine the relaxation kernel R together with its
derivative. If an evaluation of the second component of the solution (R, U)
for (1.1)—(1.4) is also necessary, then we must implement some additional
computations. For instance, U is the solution of the following family of
boundary value problems for ODE:

Uzzz(wat) = U(iL‘,t), BEOT % Xa
UHO )= TR Oy=U 0 =0; 0<t<S T
(cf."(1.3),'2.1), @9t

(2.10)
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In paper ['] we used a one step lower differentiation to deduce a system
of hyperbolic and second kind Volterra equations from a problem which is
quite similar to (1.1)—(1.4). This system includes an equation for 12 and not
an equation for the derivative r = R’. But it turns out that it is very difficult
to analyse such systems because even an estimation of U on the basis of
(1.1) brings along the derivative of R. For that reason we have applied the
higher-order differentiation in the present paper and derived an equation for
the derivative 7, too.

3. DISCRETIZATION PARAMETERS
AND AUXILIARY RESULTS

Let N and M be positive integers and
b= = 3.1)
We define the following uniform meshes at the intervals [0, X ] and [0, 7] :
N R R Y e, o
Gl = Q0= 2 A0S R
For values of functions y € (wp, — R) we shall use the simplified notation:
yi = y@:), i €wp, 0Li<N. 33

Lety,z € (wn, — R). We introduce the following discrete operations
being analogues of derivatives:

(3.2)

Yivl — Yi
h 7

éa:y : (39:3/)1 Eézyz = :yi_h¢7 1= 1’ 7Na (34)

Ay : (Ay)i = Ay; = 8,0,y:, i=1,...,N—1.

Moreover, we define the scalar products:

amy:(azy)iz zYi i=0,...,N—l,

N-—1
(Y,2):=h Z YiZi
1=1
N
4= h) dia, (3.5)
1=1

N
[y, 2] := hz YiZi
i=0

and norms:

[l Y H2 =Y (y,y)1 || y]|2:= V (y)y]a
[yl2 = VIy,yl, ||yllo= max || .

0<i<N

(3.6)
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For the operator A an analogue of the Green’s first formula is valid (see [*]):

(Ay,2) = —(02Y, 9s2] + Osynzn — OzYo2o - 3.7)
Letnow y € (wr = R) ory € (w, = (wp, — R)). We denote
= y(t;), ti€wr, 0<j<M (3.8)
and define
9y
L py) =0yl = > 7 'K J &M, (3.9
yj+1 — gy
Oy : Oy =0y’ = ———, 0<j<M-1,
fLdE (3.10)
» yl — i} )
Oy (aty)J 3ty Fury CoCGIo <5<,

The operator 0; satisfies the following analogues of the formula for the
differentiation of the product (see [*]):

Q7)) = ¥’ 02 + Oy’ 2 (3.11)
and integration by parts:
-1 -1

TZ Y827 =yl yhgh TZ Opy? 27! (3.12)
j=ll j=l|

If 7, 27 are vectors, i.e. y/,27 € (w, — R), then the formulae (3.11),
(3.12) hold componentwise.

Let us prove four lemmas that are necessary in the sequel.

Lemma 1. Fory € (w, — (wp — R)) the following estimates are
fulfilled:

2 ’ 1 o 7'2 A y
19007122 3 11 9at’ M = - 192007 Mz, 15 <M, (3.13)

‘¥
k < ICOFEIN 15
19 o max { L Vb ma 1120
< E< M. ;
b o 00 e |+ 40y 1SEEM. (b

Proof. Since
ézyj = 5m0y3 5 %éa:éty31 ks g LA

and
(di +dy)* < 2(d?+d5), Vdi,dy €R, (3.15)

we have

Aishink h ; 2 e
@t} < 200y + B0, 1<iSN.
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Summing over i = 1,... , N in view of (3.5), (3.6), we deduce (3.13).
Let us prove (3.14). Define

W)yl | = min 95| (3.16)

We can rewrite y° in the following form:

l
W=y th Y Gyt if 1@+,
=14 (k)+1
14 (k)

yb 29D RN AN TR ARy 1

1=l+1

5 =gl i U =idk).

Thus,

N
| yF ISlyﬁ(k)l +h2|3zyf|

1=l

Further, using (3.16), we obtain

N-—1 N
pp e o b L Bl +h dyyF
i=1 i=1

N
+hY | Onyf |
1=1

Y+

| B i
< 3,4
_X—hT;h; | vyl |

N ~
°|-+h§£: | OayF |

k
< — hlrgjagkhz [l 1+ 1162 lloo +h2|axu
(3.17)

+X—h

On the ground of the Cauchy—Bunjakowski inequality we have
1

lz l2 7
h Z | o IS \/(lz—ll)h[h Z (Zi)2:| 3 z € (wp, —)R), by S

’i=ll+] ’i=l|+1
(3.18)
Now (3.14) follows from (3.5), (3.6), (3.17), and (3.18). [
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Lemma 2. Fory € C?[0, X] the following estimate is fulfilled:

g 1
1 02y12< X)) - {Il ¥ 20,30 + 19" 720, %)

+(ly" llewxy + | 9" lep,xPh},  (3.19)
where c is a certain constant.

Proof. Note that for arbitrary z € C'[0, X] there holds the estimate

N XS
‘h Z(zi)z— / 2(z)dz
i=1 0

WD St
. 738

1 2(8)2'(s)ds dx

0§ A
1
<23 [ @-otdl 2 lzoxl # loox
i=1 ¥ Ti=l

4X
— Tﬁ I 2 |20, 2" llcpo,x7 - (3.20)
Making use of the well-known relation
A / 1 "
| Oayi <[y @) | +5 19" llowxy h

and the inequality (3.20), we obtain
5 3
{hZ(azyi)z}
i=1
b’ N
< { / [y’(x)]zdx} = {hz[y'(m,.)]z
0 i=1

X5 3 A
- /0 [y'(x)]zdz} + g Il ¥ llew,x) B
2vVX

<y 226, 5 2T /3 Iy ||L2(o T)” y" ”C[O T) b

I 65: 112

=

vX
S T ” 'y” ”C[O,X] h (3.21)

Estimating the middle term in (3.21) by means of the elementary formula

1 1 1 1 1
d]dz =4/ dl\/ d1d2 = -id] S Edld% < -2-d1 i Zd%-i- '4-d‘21, d],dz =2 0,
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we deduce (3.19). 0

Lemma 3. (Analogue of the Gronwall inequality). Let y, z € (w; — R),
2 20, 220, d=>0 and
k—1
y* < dOk - 1Ty 3l + 25, 0<k <k, (3.22)
§=0

where © is the Heaviside function:

S(5)= ¥ FBEOD2 DB(s) =10, 215 Lu07 (3.23)
Then
max 3’ < &dty) max 27, 0<k <k, (3.24)
0<j<k 0<5<k

where C is a certain constant.

Proof. In case d = 0, the assertion is trivial. Let d # 0. From (3.22) we
immediately derive

max e 2%yl <d max [O( — —ZdthE %
0<j<k 0<j<k

X  max e_Zdt’y + max 27, 0<k<k.
0<I<j—1 0<j<k
Since
j—1

tj
9(_7 LA l)e—Zdtj,rZeZdtz S @(_7 s l)e—Zdtj/ 62d~8d3 S i
0

2d
1=0
we have
1 —2dt; _]
max e~ Jy — max e Jy + max z O< &<k
0<j<k 2 0<j<k 0<j<k

Thus

max e 2%yl < 2 max 2/, 0<k<ko,
0<j<k 0<;j<k

and due to the estimate

e 28tk max yj < max e‘z‘“]’yj
0<5<k 0<5<k

we obtain (3.24). O
Lemma 4. If

@8 GET §£50 S ks M, (3.25)
where y¥, 28 €8 > 0 and €51 > €% then

2
(max v’ + max zj) < Ak Tep< M, (3.26)
1<j<k 1<5<k
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Proof. Due to (3.25) we have
WL £ e VS £F o S s s
and
y* < R N OB, 1E P (3.27)

Since ¢F is monotonically increasing, from (3.27) we derive

k. or gk k< ek, 1<k<M. .
o N L T £°, 1<k< (3.28)

Summing the inequalities (3.28) and squaring, we get (3.26). [J

4. DIFFERENCE SCHEME

Let us return to the system (2.2)—(2.7). We suppose that instead of the
exact data «, 3, f, g, p,ko, K1 we know certain approximations & =~ a,
B=p, f=f g=g, p=p, ko= Ky, K| = Kki.According to the
notation (3.3), (3.8), we write

fl=f@ity), Gi=a), Bi=B), F=§t) = @1
We discretize the problem (2.2)—(2.7) making use of the method of finite
differences. We replace the derivatives by the formulae (3.4), (3.10) and

the integrals by the quadrangle rule. Assuming that ky # 0, we obtain the
following system:

g
Av] — 'TZQJ_IA’Ué = a?0;0,v] + f7,

=1

1<i<N-1, 1<j<M-1, (4.2)
v} @ @B X ;) ML £ <N (4.3)
Bsv) = B0 =0, 1<j<M, (4.4)

i
¢ = _[Ug — 03y — 1)TZQJ'"v(‘,], 0<j<M, (4.5)
j—1

Q=0G-Dr) ¢+p 0<j<M, (4.6)
=0

)
qj=%[—§j+¢j—Fale—@(j—l)TZ’l/)j_le], 0<j<M.
it A7)
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In the forthcoming sections we will show that the solution of (4.2)—(4.7)
vl 1,Q,¢°, 0<i< N, 0<j< M approximates the solution of
(2.2)—(2.7) in the nodes (z;, tj) :

The difference scheme (4.2)—(4.7) is uniquely solvable because it is
explicit. Indeed, from (4.3), (4.5)—(4.7) we easily derive formulae for the
first two levels of j :

W=a, 0<i<N; 9°=—ao;

a2
Fertain ognRamamr ]
Q' =p qg==—|-9 +50—Kp|;
Ko a
i 1
vi=d+7h, 0<i<N: ¢'=—(1—T1hwp;
a
. oo .
Q' =p+71¢"% q1=%[—gl+¢l—(H1+T¢O)Q]]-

Suppose that we have computed the solution up to the level 7 — 1, i.e. we
know

G, 0<ie N, Ol ¢y Wt 1=0,...,5— 1.

Owing to this information the expression (4. 2) with j replaced by 7— 1 turns
out to be an explicit formula for the values v, 1<i<N-1 Moreover,
from (4.4) we obtain v(’), v, too. Using the computed quantities v,
1<1<j, @, 0<i<j—1landg, 0<I<j—1,from(45)and
(4.6) we get ¢/ and Q7. Finally, using ¢!, 0 <1 <j,and @', 1<1 <7,
from (2.7) we determine ¢’. Thus, the level 7 :

vl, 0<i<N, ¢, @, ¢

is completed as well.

S. STABILITY ESTIMATE

In this section we shall deduce a stability estimate for solutions of
schemes of the type (4.2)—(4.7). Let

kﬂz,kV{,ng,ng,k’)’o, kY1, 0§1§N, OSJSMa k=1,2
(5.1)
be certain prescribed quantities. Suppose that the functions

szj,kxj;kpjakpj7 OSZSN’ OS]SM’ k=1’2
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satisfy the following system with k = 1,2 :

j
A(kwf)—TZ kPTIAGwh) = a?0,0,Gwl) + rpel
=1
130T 8 X907 (5.2)

: 1 . ’ : :
kX = ;i[kwé—@(i—lﬁz kPJ_l'kw(l):l + ¥, 00 <M
=1
(5.3)
i=l _
W =BG T P ar s am O M, (5.4)
=0

k% kP =kxX — kmiow P?

J
— OG- P4+, 0<j<M. (55)
=1
Theorem 2. Let us denote the differences of the data and the solutions of
(5.2)—(5.5) as follows:

liscrmt -
wh=apd = d, vi= ol = = 2%— 190, M= M — 1,

J
w;

pj=217i—1pj, OSZSNa OSJSM7 l=1)2a3'

J i e o
oW 18y d T mexls B = P! = P,

(5.6)
If the steps T and h satisfy the inequality

a a
7T<|—=—0|h, where 0 <o < —, 57
‘(ﬁ ) V2 2P

and oy # 0, then for the functions wf , X7, PI, p the following estimate
holds:

max || w? lloo + max || Opw? I + 1max I 8 w? 12

0<j<M 1<j<M
+ I+ Pi| + '
o2 01+ B, 171+ 1, 17
S CO(X7T7 B17B27a'1 g, 270, I’Yl)E' (58)
Here
: M-—1
B = s, 47 3 6
I og}%&' wy | +7 . | AGw?) [|2
9=l
i Y]
s am il s ALk (5:9)
M—1
B, = Pi|+r )y J
2 032’5‘4]2 |+ . | 0:oP?) |,
J:

302



E =|w° ||loo + || 820’12 + [0 1|2

I3 g’
=y {100 % [y |}

Mi=1 M-—1
+ 7> {]80aw] | +] 0wk [} + 7Y 14 |2
J=1

=1
3 .
+ Z 7|+ - 5.10
l_log;.ggwlvzl [ Yo | + [, (5.10)
and cy is a certain constant.

Proof. Subtracting the systems (5.2)—(5.5) with k = 2 and k& = 3,
respectively, we obtain

J
J j—1 l
Awf = TE 2 P77 Aw;
I=1

9
= azétatwf + ‘U,',Z + TZPj_lA(l’U)b,
=l
BN Al 1M1, (5.11)

- 21
w =ZL—2|:’W(])—@(]-—1)T22PJ Lw}
I=1
—0@G—ry _ pi-t. ]w(l)] +vi, 0<j<M, (512
=1

j—1

Pl=0G-—1r) p+v], 0<j<M, (5.13)
1=0
e g : . W
P’ =;{;[X’ mel = 1’71'P’—@(7'—1)7'ZXJ_I' 2Pt
=1

9
—0G - DTy 1t Pt —youp? +ug], 0<j<M(514)

1=1
The rest of the proof will consist of three parts: (1) making use of the
method of discrete energy estimates (cf. [*]) for Eq. (5.11), we derive an
estimate for wf in terms Pi, E; (2) from (5.12), (5.14) we infer estimates

for x7, p interms w), P? and from (5.13) an estimate for P in terms p’, E
(3) combining the obtained results and applying Lemma 3, we derive an
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estimate for p? in terms E, which in turn enables to prove the statement
(5.8).
(1) Let us introduce the following discrete energy norms:

J¥ = max ||’ || + max || dpwily, 1<k<M. (5.15)
1<j<k 1<j<k

We are going to derive an estimate for J*. To this end we multiply Eq.

(5.11) by the quantity 0; ow{ , compute the scalar product (, ) (cf. (3.5),
(3.9)), and sum over j from 1 to k — 1, where 2 < k < M. Let us perform
the mentioned operations separately for each addend in (5.11).

At first, on the ground of the formula (3.7) we have

k—1
T Z(ij, dpow’)
i
Bl . gm _ K<l iy _ :
= —7T Z(@zw’,atazowj] & TZ(atowfvaxwfv — Opowldzw)),
e =1
25 <M . (5.16)
Since

Tt AL e it Ths i
yiatoyi = Eat l:(oyi) e Z(atyi) ]1

A

with y = 0, w from (5.16) we obtain

k—1
T Z(ij,at owj)
j=1
= 3 . 0 = AL
= — Y;at (|| Ogow? 13 —— || Ordzv? ]|§)
k_l . . . .
+ 7 Z(atowfvamwfv — dpowl 0y w)),
j=1
2= k< M.

Using here the formula (3.12), we have

k—1
5 ; 1 % 72 s
TZ(AwJ,Btow]) Fislz || Oz0w® 13 Pa || 0:0,w* 13 +1IF,
j=I1
2< k<M, (5.17)
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where

1 A e =l A
If =—< | Ozow' 13 —T— || 0:0,w' ]|%> + O wh 0wk,
— dywEowf — 8 wNowN+8 w oWy
k—1
— TZ(owf\;latéwa — <>w0+13t8 wo) (5.18)
j=1

On the ground of the assumption (5.7) we have

Thus
A N2 T2 A A 1,2 AL 04 1
| (Oz0ow;) —Z(Btaxwi) | =| Opw; Ozw; |
I w! —wd| [w?—wd | |wl,—wl
& h 0 7 7 2 11— & 11— 11—
1 (-]
= RO
V2 T
w! , —u w® — w?
N el WV o ]+ 3 + it D (5.19)
T

Taking into account (3.14), (5.10), (5.15), (5.19), from (5.18) we infer the
following estimate:

N
|| < e@,0)h )y | dowf | (| dpwf | +] Bewl_, |)
=1
3 1107 oo (1 0cth ]+ B+ 0 |

k—1
+| Opwly | +7 ) (| 00,w] | + | pdpw, |))
g=1
< X BEI® + (X, T,0,0)F 2< k<M. (520)

Let us perform the same operations with respect to the second addend in
(5.11). Denoting

k—1 )
=T TZ PN AW, Bpow?), 2< k< M, (5.21)
j=1 I=1
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and using the formulas (3.7), (3.12), we obtain

k—1
B TZ Z PI= 9 { (@', ByowI] + ywhy owly — dpwhow]}
J=1 =1
k—1 : ; h A
T Z{ Pt [—(azwl, Dy ow®] + Opwhy owk, — Bzw(’)ow(’f]
j=1

— 2P [0, Ozow'] + Opwhyowly — Oywhow])]

k
= Z at(ZPjul-l)[_(éa:wla ézow]] e éxwfvowgv e 8121)(’)0’11)8]}
Jj=l+1
According to the inequality of Cauchy—Bunjakowski, the formulas (3.14),
(5.9), (5.10), (5.15) and the relationow? = $(w? + wi~'), we can estimate
as follows:
b2

|IZ|<{2 max |2Pj|+TZ|at(2Pj)|}
=0

0<5<k—-1

k—1
. {]r<nax | dgow’ |2 TZ | Bz’ 1|2 + max ||<>w7 o
<
j=1

k—1
x 73 ( dowiy | +] By | )}
j=1
k—1 :
> oI+ E) J® + es(Ba)EZs
j=1
2=k M. (5.22)

S C4(X, Ta B2) <T

For the addend a?d;9,w? in (5.11) we obtain
k—1
(127' Z(étatwj, 8t011)j)
=1
2 ke
- e 30 o’ [B)

3=l

g o o k(2 a? 02
7||3tw ||2—7||3tw oo ks M.

Thus
k—1
A’ (00w, Bpow’) = — || Bk HTE,” &< & < M (5.23)
3=1
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where

a2
L £ 7152. (5.24)
Finally, for the quantity
k—1
IF = TZ(u + TZPJ AGuh, 8t<>w3>, ks, M (525)
j=1

we derive the estimate

k—1 ]
I |sTZ(|| i 473 | P (|| AGu') nz)
j=1 =1

[y e :
X 5 | Os(w? +w? ™" ||
§c6(T,B,)(E + max | P | )J’“. (5.26)
0<j<k

Summing up, from Eq. (5.11) in view of (5.17), (5.21), (5.23), and
(5.25) we obtain

o o "'ZAAkzaz“kz
2 | Ozow™ 1|z — T || 0z0:w" 1|3 i | Opw® |3
== ot ek 22b< M,
and due to (5.20), (5.22), (5.24), (5.26) we have

1"k27-2”"k2a2"k2
5 [ 0zow® ]|z = —= [| 0:0;w" 1|z +- || Opw” |12
2 8 2
k—1
§c7(X,T,B|,B2)< PRLE: max |PJ | +E)
e 0<3
+c3(X,T, By, a,0)E?, 2<k<M. 5.2
Making use of the inequality
72 || 8z0w* 113
N—1
=770 Y (0:0,wF ) + T2 (B0, wh)? + T2 h(0, 0wk
=2
2 =

h Z 2((Bpwh)? +(Oywk_ )2
=7
+2h[(c’9 wh)? + Opwh 1) + (B wh) + (Bpwh 'Y

< 4— || Osw® |2 +4hE?
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and the formulae (3.13), (5.7), we can estimate the left-hand side of (5.27)
from below:

l*szz‘*kzaz*kz
§||3x<>w ]|2——|| 0z0;w" |3 +—||6tw I

7 || 3 w ]|2 5 G ||3 atw ]|2 +“ I ‘9twlC “2

~—.:>

7| Hpwk 12 +a(\/’a—a) | Byw® |2 —hE*.  (5.28)
Thus (5.27), (5.28) yield
| Bzw* 13+ || dpw® |13

< c(X,T, By, By, u, a)( ZJJ + max |1.DJ |+E)J

i+ CIO(X7 T, BZ: a, U)E ’ (529)

where 2 < k < M. Let us derive an analogue of (5.29) for £ = 1, too.
Since

(dy+dy +d3)* < 3(d2+d%+d3), Vd,dy,ds €R,
due to (5.7) we obtain

1 9zw' 13 + | dew’ 13

AN
(8]
b=
NG,
e
E i
Sls
]

(et

w? — w? 2
+ (T_l> }+ | 8w® |13 < cla,0)E*.  (5.30)
The estimates (5.29), (5.30) imply

I 5zwk]|%+ | dyw* B clz(X T, By, B,,a,0)
(@(k 2)72.]1 + max, |PJ |+E)J
j=1

+ c13(X, T, By, a, U)Ez, 1<k<M.
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According to Lemma 4 and the formula (5.15) we get

k—1
(J*)? <ciu(X, T, Bi, By, a,0) <e(k —2ry J
il
+ max | P | +E> J* + e15(X, T, B, a,0)E?,
0<5<k
1<k<M. (5.31)

Solving the quadratic inequality (5.31) with respect to J*, we derive the
formula:

k—1
Js = C]6(X,T,B],B2,a,0')<®(k—2)T E J7 + max | P? | +E>
=1 0<5<k

1 <k <M.
Making use of Lemma 3, we obtain the inequality
J*¥ < ¢i3(X,T, By, By,a,0)( max | P? | +E),
0<j<k
1<k <M, (5.32)

which in view of (5.15) represents an estimate of wf in terms P7 and E.
Moreover, Lemma 1 together with (5.32) implies

J L J
0r<naé(k | @ ||oo < c18(X, T,By, Bz, a,0)( gljax | P | +E),

0<k<M. (5.33)

(2) Let us go on by estimating Eqs. (5.12)—(5.14). We immediately
obtain

. 1 .
il<=||wl|+03G - DT P!
| x |_a2[|wo| Cl¢] )Osr{l;x_llz |1‘2f‘<"[w0|

+03G - 1T max: |P’|max|1w0| +|u{|,

0<I<g 1<I<j
0 53 <M, (5.34)
. j_l .
| PLl<0G=Dr Y |phl+ | 4| 0L <) e (535)

1=0
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P — |[1Xj|+|71|'|sz|+Iml-lel
—1)T: P!
+03G -1 s, lelrgf;xlz l
= Pl
g — DT T Inxllrglfgl I
+||Pj|'|70|+|V§|}, 0<j<M. (536

In view of (5.9), (5.10), from (5.34)—(5.36) we derive

0r<naé(k | X! | < eo(T, Bl,Bz,a)( mJax | wo | +E)

0<k< M, (8:37)

I8 =z = J s k= ;
Or<na<xk|P| Ok 1)TZ|p]|+E, 0<k<M, (538

y :
£ ol B B o, J
| p* | < e20(T, By, Ba, 2% 171)[0rsnjaéklx l

+ max | P?|+E], 0<k<M. (5.39)
0<5<k

The latter inequality due to (5.37) yields

< T,B,,B
| p* | <ean( 1 B2, 90, 17,)[r<naé<k|w0|

+ max | P/ |+E], 0<k<M. (5.40)
0<5<k

(3) Finishing our proof we use the estimate (5.33) for wg and (5.38) for
P7 in (5.40). We get

k-1
| p* | < ¢n(T, By, By, a, 0, 27, 1’71)(9(76 = 1)”'2 |’ |+E>,
=0

0<k< M.
Thus, due to Lemma 3

Oglgx | P | < en(T, By, By, a, 0, 27, 1M)E. (5.41)

Now the statement of Theorem 2 follows from the estimates (5.41), (5.38),
(8:37) and (5:88):(5.32n 0]
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6. CONVERGENCE AND REGULARIZATION

On the ground of the formulae (3.3) and (3.8) we can write:
B iflos i) Hon Shoiel), ! 8= Px)), |97 g,

Due to (2.2)—(2.7) and (4.1), the functions u, ¢7, R’, r7 satisfy the
following system:

(6.1)

u

J
J =7 G e A0 ) J J
Aul — 7Y RIT'Aul = a’0,00ul + f] + €,
=l

lgia - " TZ32M ), 6.2)
w = a;, Ol =6+ ¢ 0LIE N, (6.3)
o) = i, Bpdy =mly, 1<j<M, 6.4)

bl 0 e - 4
¢ = ;[ug — 0@ — I)TZRJ_luf)} +E 0 ELWFY (6.5)
=1

j-1

RI=0G-1ry rt+p+d¥, 0<j<M, (6.6)
=0
: 1 : . ! dy W
ri = —[—gﬂ +¢ — kR —0O@ — ])TZ(ﬁJ—ZRlJ +—2,
150 =1 i
0<j< M, 6.7)

where

(3

J
€ =Aul — ug(zi,ty) — 7 E R Al
(i)

tj 1S :
+ / R(t; — $)ugzs(zi, $)ds + a*up(xi,t;) — a’0s0sul,  (6.8)
0

Gi = 0w — ug(;,0), (6.9

M = 0pu) — uz(0,t), 1y = Bovdy — ug(X, 1)), (6.10)

e p— 1 % R(t; — s)u(0, s)ds — O(j — l)TiRj—lUl (6.11)
1 a? \ Jo ; : olution.

=1
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t; J=1
% o= / r(s)ds — O —r y _rt,
s 1=0
; Jefer, tj
¥ =03 - 1)TZ¢J—’R’ L /O B(t; — s)R(s)ds .

=1

Lemma 5. Let v € C3*(D), ¢, R € C'[0,T]. Then
| € | < (T, By, BR)h+7), |G| < cas(Bu)T,

| 773 | < ca6(Bu)h, [Tﬂv | < c27(Bu)h,
| 8l | < cos(Bu)(h+7), | 8y | < coo(Bu)(h+7),

| 9% | < e30(T, By, Brya), | 95| < cai(T, Br)r,
| 19% | < ¢32(T, By, Br)T,
where

By =||ullexwy, Br =l R |lciory B =l ¢ llcror -
Proof. 1t is well known that
|t~ 2(@) | < 3 | ez lowx b iy € G210, X1,
|0t = @D 1< 5 s lowr b iy € GO, X,
| A%: — U@ | < 3 [l s llowor B i 3 € G0, X1,
| Opy? = yel(t;) | < % | st llco,my 7 if y € C?[0,T1,

1 W) 1 .
| 0:0ry’ — Y (t;) | < 3 | yete llcom 7 if  y € C°[0, T,

and

t J
/ y(s)ds — G — DHr Y ot

0 Pl

=

i}
2
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(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
(6.20)
(6.21)
(6.22)

(6.23)

(6.24)



The assertions (6.14), (6.15), and (6.17) simply follow from (6.19)—(6.24)
and the relation » = R'. Let us prove (6.16). In view of (6.10) we have

: . 1 h tj+| A
01} =010, — Olua(0,1)] = — / / [6s(s, §)
(i 0 tj
0, L O L B ()]

Since

1
d
bebio 5)— nillh e / g, 13+ (5 — )60
L

|
- / [$Uata(SE, £ + (3 — £)€)
0

+ (8 — t)uge(sE, t; + (8 — t;)€)1dE
and0 < s < h, 0<3—t; <7, weobtain the inequality

. 1
| 0¢mg | < || st oy B+ || vzt llomy T + 2 | uztt llcoy 7,

which due to (6.18) yields the first estimate in (6.16). The second estimate
in (6.16) can be proved in a similar manner. The proof is complete. [

Next we are going to compare the solutions of the systems (6.2)—(6.7)
and (4.2)—(4.7) by means of Theorem 2 and Lemma 5. The relations (6.2),
(6.5)—(6.7) and (4.2), (4.5)—(4.7) take the form (5.2)—(5.5) if we denote

1=, wl =9, =4 =9,
IP'7 = RJ) ZPJ = Q], lp] = ,’J’ 2p] e QJ,
Jait. Pl J Jin 2 | PR ) ARE
U fz BEFWOILGILSE Wil U416 19“ 2’/{ =0, (6.25)

J

1w

g A g o . ) g %
p+192a 2”2 =0 IVJ = _gJ+7~9§) ZV] i _g]7

L
1% = Ko, 2% = Ko, 171 = K1, 271 = Ki.

In accordance with the definitions (5.6), (6.25), the initial and boundary
conditions (4.3), (4.4), (6.3), (6.4), we have
w = o~ &, Ow]=Pi—Pi+G, Ouwl=n,
a’\zw?\/ =n3\/7 /‘z = f'g_ﬁ+63’ V{ =19{’ (626)
V%=p_i5+'l9%a V§=§j—9j+19§, 70'_‘""'0—’%07
M = K1 — Ky
Now due to (6.25), (6.26) we see that Theorem 2 and Lemma 5 imply the
following theorem:

Theorem 3. Let u € C3(D), ¢, R € C'[0,T], Rg # O and let the
inequality (5.7) be valid for T and h. Then the difference of solutions of
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(6.2)—(6.7) and (4.2)—(4.7) can be estimated as follows:

max || v — v ||loo + max || 8w’ — v7) |2
0<j<M 1<j<M
g = e J
+ max || Oz(u? — v9)15 + glaleb’ P |

o RJ J o ix
oI [ R —Q7 |+ max |ri—g’]

< (X, T, Bu, By, Br, Ba, 0,0, o, s){ | & = & o
A ~ M_l . ~ .
+ | el =@ +(B=Bla +7 > I 7= 7 |I2
j=1

+ |pspl 4 max Jgd=g | + | mo—Fa |

0<j<M
+|f€1—f7€1|+h+7'}, (6.27)
where
M—1 .
Bq =Ogg§JIQJI+T§ | 0:Q7 |
SE
= max | Q7|+ Zg‘ | @b (6.28)

the quantities B,,, By, Br are defined by (6.18) and ¢ is a certain constant.

Theorem 3 says that the convergence of the solution (v, %, @, q) of
the difference scheme (4.2)—(4.7) to the exact solution of the problem
(2.2)~(2.7) in nodes (z;, ;) takes place under the following conditions:

(1) (&,B,f,p,3, ko, k1) converges to (a,p, f,p,9, kKo, k1) in norms
indicated on the right-hand side of (6.27),
(2) h and 7 tend to zero in the coordinated manner (5.7),
(3) the quantity B¢ that depends on the approximate solution remains
bounded in the process of approximation.
The condition (3) is necessary because By is included in the coefficient
Co in (6.27). To get rid of the restriction (3), we must estimate B¢ in terms
&, B, f, p, g, Ko k1. This is a quite complicated task since the problem (4.2)-
(4.7) is nonlinear. However, the method of weighted norms of Bielecki type
(see [4]) may help here, because the nonlinearities in (4.2)—(4.7) have the
form of discrete convolutions.
Finally we describe the entire procedure of solving the inverse problem
(1.1)=(1.4). Suppose that instead of the exact data A, B, F, G we know
certain approximations A, B, F, G. Let the error of the data be 9, i.e.

IA~Alla<d, [|B-B|p<d, |[|[F~F|r<s, [|G-GClle<é
(6.29)
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in some norms || - ||A, Il - llB5]l - ll#s |l - lle - The first stage of solving
the inverse problem is linear but ill-posed. We have to compute the
approximations &, Boifs p, G, ko ki for the quantities «, (3, f, p, 9, Ko, K1
on the basis of the formulae (2.8). To this end we apply some regularized
methods for evaluating the derivatives of the functions A, B, F, G.
Suppose that the errors of the obtained approximations satisfy the following
estimates:

|&—allo < mi(@), [[8=Bla< mi)
M—1

r 2}: 17 = F o< m@,  max 17 =g’ |< mi@), (6.30)
J:

[p—p|< mi©), |F&o—kol|< mi(d), |&i—k1]< mid),

| (@— @) ||lr20.x) < m2(8), || (@—@)" |lcro,x1< m3,  (6.31)

where m;, m, are some continuous functions, m;(0) = m»(0) = 0, and m3
is independent of 4. It follows from Lemma 2 and (6.31) that

|| 92(@ — @) ]2 < const (y/ma(8) + h) (6.32)

if my(9) is small.

The second stage of solving (1.1)—(1.4) is nonlinear but well-posed.
From the scheme (4.2)-(4.7) we evaluate the mesh functions v; =~
u@i tj), ¢ ~ ¢(t;), @ =~ R(t;), ¢ =1l =R(t;), 0<i<N,
0 < j < M. According to Theorem 3 and (6.30), (6.32), we have

g cuzd gy
T | v = v [l + ax, | O(u? —v7) ||

Jhisugsd J
b max [ i) + max | ¢~

+ R —Q | + -
0<rgzg§wl Q| Oénjggwlr ¢ |

< const (my(8) + \/ma() + h + 7).
(6.33)

We point out that the estimate (6.33) holds provided the approximation of
the function « is good enough, i.e. (6.31) is satisfied. Otherwise the stage
of solving the system (4.2)—(4.7) is also ill-posed. For instance, if (6.30)
holds but (6.31) not, then

0u@ - )< 4V [ 6~ a floo 7 < 4VE IO

and we must set the step ~ depending on 4.

The second stage provides the values for the relaxation kernel R and its
derivative. To determine the second component U of the solution (R, U),
we must additionally solve the problem (2.10).
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Remark. We can apply the method of finite differences to multidimensional
analogues of the problem (1.1)—(1.4) as well. Only in this case the error
analysis needs higher energy estimates, i.e. estimates with differences of
higher order than in the expression of J k (see (5.15)). This is due to the
breakdown of Lemma 1 for the first differences in the multidimensional
case.
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UHEMOOTMELISE VISKOELASTSE KESKKONNA
LIIKUMISVORRANDIGA SEOTUD POORDULESANDE
LAHENDAMISEST DIFERENTSMEETODIL

Jaan JANNO

Uhem@dtmelise lineaarse viskoelastse keskkonna liikumisvorrandiga
seotud poordiilesanne on taandatud hiiperboolset ja Volterra teist liiki
vorrandeid sisaldavale siisteemile. Saadud siisteemi on diskretiseeritud
diferentsmeetodiga. On tdestatud meetodi koonduvus.
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