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Abstract. The right invertibility problem is studied for a class ofrecursive nonlinear systems
(RNS), i.e. for systems, modelled by recursive nonlinear input—output equations involving
only a finite number of input values and a finite number of output values. The concept of

delay orders and the special case of right invertibility, the notion of (ds, ..., dy)-forward
time shift (FTS) right invertibility, known for discrete-time nonlinear systems in state space
form, are extended to RNS. Necessary and sufficient conditions for local (dy, ..., d,)-FTS
right invertibility are proposed. Finally, it is shown how to generalize the special case of

right invertibility — (dl, . . ~ dp)-FTS right invertibility — using the ideas from the state space
theory.
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1. INTRODUCTION

The fundamental question of the existence of right inverses for
nonlinear discrete-time dynamical systems is discussed in this paper. Such

a right inverse is intuitively understood as a second nonlinear system such
thatwhen the original system is applied in series with this right inverse, then

its outputs are equal to the inputs of theright inverse system. Because of the

inherent delay typically found in dynamical systems, in a great number of

cases such inversion is not possible, and the problem is of limited interest.

Greater generality is obtained by considering a notion of forward time shift
(FTS) right inverse, in which the input to the right inverse system is not

just the reference signal y,..f(¢) but the reference signal at some future time
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instant ¢ + «, i.e. Y,er(t + ). The determination of the smallest possible
value for « is a question of practical and theoretical importance. In case

of multi-output systems, the value of the smallestpossible «, in general, is

not the same for all components of the reference signal. A very important
concept in treating system inversion from this generalized point of view is

that of delay orders.

Except the paper [!] on finding the inverse Volterra representation,
previous work on this subject concentrates mostly on systems having a

state space representation [2~!3]. The purpose of the present paper is to

study the FTS right invertibility problem for a class of systems described by
recursive nonlinear input—output equations involving only a finite number
of input values and a finite number of output values. Such systems are

called recursive nonlinear systems (RNS) [}4~l6]. We shall extend to this

class of nonlinear systems the concept of delay orders and the notion of

(dy,...,d,) -FTS rightinvertibility. The latter is a special case of FT'S right
invertibility in case of which the smallest possible values for a4, ..., a,
may be realized.

Note that in ['7 18] for single-input single-output RNS the question of

dead-beat control has been studied. The latter problem is closely related
to the right invertibility problem. Unlike [*" B], we consider the multi-

input multi-output systems and concentrate on the local solutions around

an equilibrium point of the system. However, the paper does not give
any algorithm which explicitly constructs the right inverse system,; it only
presents necessary and sufficient conditions under which the right inverse

system locally exists and describes how to obtain it. The solution given in

the paper relies on the application of the implicit function theorem.

2. THE DESCRIPTION OF THE RNS

In this section, besides recalling the notion of the RNS ['* 7], we

establish some notations and introduce some preliminary material.

We denote by S(R™) the set of all two-sided infinite sequences of the

form

(2(0)) = (ors2(=1),2(0),2(1),2(2),- .),

where z(t) € R™ for all integers t.

Dynamical system. A dynamical system is a map

Y1 S(R™) = S(RP) : {u(t)} — {y(t)}

which transforms the input sequence {u(t)} into the output sequence
{y(?)}.

Given two systems ¥; : S(R™) — S(RP) and X, : S(RP) — S(RY),
we denote by 35 0 3; : S(R™) — R(9) the system represented by the

composite map.
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A finite subsequence of the infinite sequence {z(¢)} between time

instants ¢ and ¢ — 7 stacked in the column vector is denoted by

Zlt;t-r)= (2"(t),z2T7(t-1),...,z"(t-7))*', 172>0.

If 7 < 0, it is understood that Z(¢, ¢t —7) denotes an empty subseguence of

{2(t)}.
If for every input sequence {u(t)} the corresponding output sequence

{y(t)} of the system X satisfies the equation

y(t):F(Y(t—l’t_fl)7U(t_l’t_V))a (D)

where F' : RFPT"™ h RP isa C“ map and 1 < u < 00,1 < v < 00, then

the system X is said to have a causal finite dimensional realization.

Definition 2.1. Recursive nonlinear system. A recursive nonlinear

system (RNS) is a system which has a causalfinite dimensional realization

of theform (1).

Definition 2.2. Equilibrium point. The pair of constant values (u°,y°) is

called the equilibrium point of the RNS (1) if (u°,y°) satisfies the equality
y = F(YSUY, where Y = (y5T7,... , y>7°, V=(uT)..., vDT.

From now on, we consider the RNS (1) at non-negative time steps in a

finite time interval 0 < ¢ < ¢z under the initial conditions

U(-1,-v) (u?'(=l),...,uf(=v))T

Then the system (1) has as inputs the sequenceu = {u(t);0 < t < tp}.
Throughout the paper we shall adopt a local viewpoint. Moreprecisely,

we work around an equilibrium point (u’,y°) of the system (1). Let us

denote by U° (resp. U) the set of control sequencesu = {u(t);0 <t < tp}
(resp. U(t—l,t—v)) such that the controls u(t) for every ¢ are sufficiently
close to u?, i.e. that || u(t) —u" ||< 4 for some § > 0. Analogously, let

us denote by )V (resp. Y) the set of output sequences {y(t);0 < t < tp}
(resp. Y (t — I,t —p)) such that the outputs y(¢) for every ¢ are sufficiently
close to ¢, i.e. that || y(t) — y° ||< € for some ¢ > 0. Denote by z°
a (up + vm)-dimensional vector (y%7, ...,

y%T %7 ... w®T)T. Finally,
let us denote by X° the neighbourhood of z° such that for every z € X°,
| z — z° ||< for somey > 0.

For difference equation (1) under initial conditions z(0), as long as F’

is a well-defined function of R¥PT™ there is no problem regarding the

existence and uniqueness of its solution y(¢;0 < ¢ < tr), for an arbitrary
control sequence u € U°, and an arbitrary initial condition z(0) € X°.
Such a solutionwill be denoted as y/(¢, z(0), u) which is a shorthand writing
for y(¢, z(0), u(0), ..., u(t —1)).
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3. THE DELAY ORDERS WITH RESPECT TO THE CONTROL

For discrete-time nonlinear systems, described by state equations,
the delay orders d;,2=1,...,p (in literature also referred to as the

characteristic numbers, the relative orders or the dead times) with respect
to the control have been defined, one for each output component. These

structural parameters of the system tell us how many inherent delays
there are between the ¢th component y; of the output and the control, or

equivalently, for how many first time instants y; is completely defined

by the initial conditions and which is the first time instant for which the

possibility arises to change y; arbitrarily.
In this section we shall extend the concept of delay orders to the class

of RNS. Define the ith component of F'in (1) by F;.
At first sight itmay seem that one can define d; as the smallest positive

integer k£ such that

o
F;(Y(i- I,t - u),U(t - I,t —v))ou(t—k)* itS ”

is not identically zero. Using the above definition, a RNS (1) with delay
orders dy, . . ~ d, admits a representation of the form

yi(t + dz) = E(Y(t +d;—l,t+d; — ,LL), U(t), U(t —l,t+d; — I/)),

i=1,...,p. (2)

However, in general, the above definition is not in complete correspondence
with the state space formulation of the concept, since it does not show

for how many first time instants y; is completely defined by the initial
conditions (observe that (2) contains y(t + d; —1), ..., y(t) which are not

the part of initial conditions and may depend on the control). The following
example serves as an illustration.

Example 3.1. Consider the system

yl(t) = ’U,l(t —1) + UQ(t — Z)yg(t — 1),
y(t) = us(t-2)- us(t — 3)y(t -2) +y3(t —1),
ys(t) = -—us(t —1) — us(t — 2)ya(t —2).

Compute

Yot +2) = uslt) — ua(t — Vyi(t) + y3(t + 1). (3)

By the above definition, d; = 2. However, actually there is no possibility
to change y, (¢ + 2) arbitrarily since

ys(t + 1) = —ua(t) — us(t — I)ya(t —1), 4)
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and if we replace y3(t + 1) in (3) by the right-hand side (RHS) of (4), we

see that in (3) y»(t + 2) depends completely on the initial conditions:

yg(t + 2) — —Ug(t — ].)yl(t) — 'U,3(t — I)y2(t — 1)

Next we shall give a proper definition of the delay orders for RNS.

The FTS operator ¢ is defined as dy(t) = y(t + 1).
Apply the one-step forward shift operator to Eq. (1) and replace in the

latter y(¢) via the initial conditions, i.e. viathe RHS of (1), in order to obtain

= F(F(Y(t—l,t—p),Ult—l,t—v)),Y(t—l,t - p+l),
u(t),U(t—l,t—v+l))

= F'(Y(t-I,t- u),U(t - I,t -v), u(t)).

Denote the ith component of F'! by F! and compute fori = 1,...,p
the derivative

0
—F(Y(t—l,t—p),Ut—l,t— t)).t 1t ), Ul = 1,6 v), u(D)

From the analyticity of the system (1) it follows that either the vector

OF; (-)/0u(t) is nonzero for all (Y (¢ —l,t —p),U(t—l,t—v)) belonging
to an open and dense subset O; of Y x U or this vector vanishes for all

(Y(t—l,t — p),U(t —l,t —v)) € Y x U. In the first case we define

d; = 1, whereas in the latter case we can see that the function F! does not

depend on u(t), i.e. it depends completely on the initial conditions, and so

we may write

yl(t+l):‘FZl(Y(t—l7t—/*")7U(t_l7t—V)) (5)

Apply again a forward shift operator to Eq. (5) and replace in the latter

y(t) via the RHS of (1):

y(t+2) = F(y(t),Y(t-I,t - p+l),u(t),U(t - I,2—v+l))
= B EY@E-I,t-p), Ut~ I,t—v),Y(E~lt—p+l)

u(t),Ut—l,t—v+l))
= F(Y(t~lt—w),Ul—l,t-v),ul).

Compute in an analogous fashion the derivative

0
—F(Y(t—l,t— t—l,t— t)).SKt 1t j), Ut - 1t ),u(t)

If this vector is nonzero on an open and dense subset O; of Y x U, we set

d; = 2; otherwise we continue with

it +2) =F2(Y(t-I,t—v),U(t-I,t—v)). (6)
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In this way the number d;, if it exists, determines the inherent delay between
the inputs and the sth output.

A RNS (1) with delay orders d;,7 = 1, ..., p admits a representation of

the form

yl(t + dl) ™ 'Fldl (Y(t % 17t AT /L), U(t — 17t— I/),'l,L(t)),

: (7

Yol et (o) = Fr(Y(i-I,t-u),U(t - I,t -v), u(t))
or in the vector form

yl(t+ dl)

: = A(z(t), u

biy
] (z(?), u(t)), (8)

where

—

Y(t —la t - ,U,)
o0 = -li-1) |

By definition of ['7 !8] a prediction model with the prediction horizon d

for a RNS is a recursive map which allows the computation of the output
at future time instants ¢ + d from inputs up to time ¢ and outputs up to time

t — 1. According to the above definition, the representation (7) is actually
a prediction model for (1) with the prediction horizon d; for the ith output.

Using the proper definition of the delay orders, we may compute for

Example 3.1 d; = d3 = I,d; = 3 and the representation (7) takes the

following form

yl(t +1) = ul(t) + ’LLQ(t — I)[U2(t —2) — Uz(t — 3)’yl(t —2)

+y3 (t by 1)])

Yot +3) = —uo(t)ur(t) — [ua(t)ua(t —1) + us(t)][u2(t —2)

—ua(t = 3)yl(t —2) + ya(t — 1)},
y3(t +1) = —Ug(t) — ’U,3(t — I)'y2(t —1)

4. THE CONCEPT OF FTS RIGHT INVERTIBILITY

It is natural to say that the system X is right invertible if the map X is

surjective, or equivalently, if there exists another system 3" : S(RP) h

S(R™), called the right inverse, such that the input—output map of the

composition of ¥3" and X is the identity mapLy:

Yodo' =1 SR > S(RP).

If X is invertible in the above sense, then it is possible to reproduce an

arbitrary p-dimensional sequence {y,.f(t);o < ¢t < tr} as an output of X

by manipulating the input sequence.
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This definition is certainly too restrictive for most systems and

obviously useless for strictly causal RNS of the form (1), where the map
F does not depend on u(t). Such systems cannot be right invertible in the

above sense, since the output y at t = 0 is not affected by the input and is

completely defined by the initial conditions z(0):

y(0) = F(Y(-1, ), U(~1, —v)) = F(z(0)).

In general, the output may be defined completely by z(0) also at a few

next time instants ¢ = 1,2,...,d — 1. Therefore, for those systems it is

useless to require that all sequences would be reproducible. The best we

can achieve is that all sequences could be reproducible beginning from the

time instant ¢ = d. For example, in the case of the system (1) having delay
orders d1,.-.,dp, we have fori = 1,...,p

vi(0) = Fi(z(0)),
v(1) = F;(2(0)),

vi(di-1) = F(2(0))

and the output y; is only affected by the input u(0) d; steps later:

vi(di) = F{7(x(0),u(0)).

We shall modify the definition of right invertibility according to the

above observations and introduce the notion of (d1,...,d»)-FTS right
invertibility around an equilibrium point (u°, 4°) of the RNS (1).

Definition 4.1. (d,...,d,)-FTS right invertibility. The RNS (1) is

called locally (d,, .. ~d,)-FTS right invertible in a neighbourhood of its

equilibrium point (u°, y°) if there exist sets U°, Y°, and X° such that given
z(0) € X°, we are abletofind for any sequence {y,.;(t);o < t < tp} €

V° a control sequence {u,.;(t); 0 < t < tr} € U° (not necessarily unique)
yielding

yi(t7x(o)auref(o)7 Sy 7uref(t)) — yref,z'(t)a dz St S tF, 1= 17 <oy D

Denote by )? the set of sequences {y;(t);0 < t < tp} € V.
Then the above definition says that for the ith output component it

is possible to reproduce locally all sequences y,.s; from ), beginning
from the time instant d;. But (dy, ..., d,)-FTS right invertibility does not

allow us to reproduce the first d; terms in the arbitrary sequence {y,.r:(%);
oO<t<tr)€ .
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5. NECESSARY AND SUFFICIENT CONDITIONS FOR FTS

RIGHT INVERTIBILITY

Consider the RNS (1) with delay orders d; < 00,7 = 1,...,p, I.e. the

system described by Eqgs. (7).
We introduce the so-called decoupling matrix K(x,u) for the system

(1) in the following way

[ Bt

7

Fh(z,u)
From the definition of the d;s the rows of the matrix K(z, w) are nonzero

vector functions around (u?, s°). It is obvious that the rank of K(z,u) is,
in general, input and output dependent. However, we shall assume that

K (z,u) has a constant rank around (u?, y°). This assumption is formalized

in the notion of regularity of an equilibrium point.

Definition 5.1. Regularity of an equilibrium point. We call the

equilibrium point (u®,y°) of the system (1) regular with respect to

(dy,...,d,)-FTS right invertibility if the rank of the decoupling matrix

K (z,u) of the system (1) is constant around (u°,y°).
Theorem 5.2. Assume thatfor the system (1)d; < 00, 1 =1,...,p. Then

the RNS (1) is locally (dy, .

.., dy)-FTS right invertible around a regular
equilibrium point (u°, y°) ifand only ifrank K(z°,u°) = p.

Proof. Sufficiency. Consider the system of equations (7). By the definition

of the equilibrium point we have 11° = A(z° u®). Observe that the

Jacobian matrix of the RHS of (7) with respect to the control u equals to

the decoupling matrix K(z,u). By the assumption of the theorem the rank

of the decoupling matrix K(z,u) is equal to p at the equilibrium point
(z°, u®). So, we may apply the Implicit Function Theorem in order to solve

the system of equations (7) with respect to the control u. After a possible
reordering of the control components we may assume that the Jacobian

matrix of the RHS of (7) with respect to u' = (uy,... ,up)T around the

point (2%, u°) has the full row rank p. Therefore, Egs. (7) can be solved for

u'(t) uniquely around (z°, u®). Define u? = (upyl,. .

~ Um)”-
The Implicit Function Theorem says that in some (possibly small)

neighbourhood (z°,u°,4°) there exists a smooth function ¢ of variables

z(t), yi(t+di),...,yp(t +d,), and u(t), i.e.

u'(t) = p(z(t), yi(t +di), ...,yp(t + dp), u*(2)), (9)

which is such that

(a4%) = u'®

and

it + di),...,up(t +dp)]"
= A(z(t), p(z(t), yl(t + dv), ..

~ Yp(t + dp), u%(), u?(2)).
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Necessity. Suppose that the system (1) is locally (dy,...,d,)-FIS right
invertible around its regular equilibrium point (u°,3°). This implies, in

particular, that at the time instant ¢ = d; at the sth output y; of the system
(1) we can reproduce by the suitable choice of u(0) = uref arbitrary Yref,i
sufficiently close to y?, i.e. the following holds

F*idi(x(o), uref) — Urefi »
1= ]-7 <oy P

Assume that rank K(2°,u%) = k < p. As by regularity of (u?,y°),
k is constant in some neighbourhood of (u%,y°), the rank of K(z,u)
in this neighbourhood is less than p. This implies that the functions

F (z(0), ure), i=1,...,p0f uref are functionally dependent, i.e. there

exists the map R(-) such that

R(FfŠ,..., FS?,z(0)) = R(Yrefl>--++Yrefp T(0)) = 0.

The last eguality means that yres is not arbitrary but satisfies the

equation R(Yref,l,--+»Yref,p; T(0)) = 0 which gives a contradiction. This

completes the proof.

Remark 5.3. Clearly, rank K(z°,u°) = p requiresm > p. So,p < m is

always a necessary condition for a system to have a (dy, . .

~ d,)-FTS right
inverse, i.e. the system must have at least as many inputs as outputs.

Remark 5.4. We should like to stress that the assumption of the regularity
of the equilibrium point (z°,u®) in Theorem 5.2 is extremely vital. If the

point (u°,y°) is not regular, i.e. around the point (u°,y°) the rank of the

decoupling matrix K(z,u) is not necessarily constant, then the condition

K (2°,u%) = p is not necessaryfor (dy, . .

~ dy)-FTS right invertibility.

The illustration of this phenomenon is given in the following simple
example: :

y(t) = u(t — 1)°. (10)

We have
3

K = —A =3u°.(I,u) = =
A(z,u) = 3u

At the equilibrium point u® = 0, 3° = 0 the rank of K(z,u) is equal
to O which is less thanp = 1. Still, the arbitrary sequences are reproducible
for 1 < t < tr by the choice of the control

u(t) = Jy(t+l).

The reason is that the point u® = 0, y° = 0 is not a regular equilibrium
point. The rank of the matrix K(x, ) is equal to 1 at all points u # 0.

From Eqgs. (9) it is clear that the set of recursive nonlinear systems of

the form (1) is not closed under system inversion: the inverse system in

general depends on the future values of the outputs of the original system.
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There exists no right inverse for a strictly causal recursive system
such that the input to the original system can be computed as the output of

the inverse system without using the futurevalues of thereference signal, or

equivalently, without using forward shift operators on the reference signal.
Actually, for (dy, ...,d,)-FTS right invertible systems, the output of the

right inverse system (i.e. the control of the original system) at the time

instant ¢ will depend on the sth component of the reference output at the
time instant ¢ + d;. As y,.r is generated by the designer, in the actual

control law design this implies that a change of the reference signal must

be preplanned some time steps ahead, which is often a realistic assumption.
If this is possible, the right inverse system can be realized.

If the reference signal can be generated from a model M, the need for

future values of model inputs is avoided under the conditions that the delay
orders of the model are equal to or greater than the corresponding delay
orders of the ((dy, . . ~ d,)-FTS right invertible) original system.

6. EXAMPLES

Example 6.1. Consider the RNS

() = w(t—l)+ua(t — 2)ya(t —1),
y(t) = wo(t —2)[yrl(t —2) +l]

fort> 0 under the initial conditions [UT (-1, -2), YT(-1, -2)]%.
The delay orders of this system are d; = 1, dy; = 2 and the system can

be represented in the form

yl(t +1) = ul(t) + Ug(t — I)U2(t — 2)[yl(t —2) + I],

This system is (1, 2)-FTS right invertible around an equilibrium point with

99 # —l. The equations of the right inverse are:

ul(t) = yl(t +1) — Ug(t — I)U2(t — 2)[l + yl(t — 2)],

us(t) = wlt+2)/I+wu(t— 1) +ut — 2)ys(t — 1)].

Example 6.2. Consider the RNS

yl(t) = 'Uq(t —3) — Ul(t — 2),
() = w(t—2)/[yi(t -2) +l]

fort > 0 under the initial conditions [Y (-1, -2),UT (-1, —-3)]T.
The delay orders of this system are d; = ds = 2 and so the system can

be represented in the form

n(t+2) = wue(t —1) —u(t),
Yot +2) = uy(t)/[us(t —3) — 2uy(t — 3)uy(t —2) +ul(t —2) + I].
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It is clear that this system is not locally (2,2)-FTS right invertible, since

the rank of the matrix K is equal to one for all possible equilibrium points.
However, the arbitrary reference signals can be generated at the first output
starting from the time instant 3 and at the second output starting from the

time instant 2 by the choice of the following control

ur(t) = Yrerat +2)[l + (uat —3) — wa(t - 2))7,

Us(t) = Yrepa(t+3) + Yrepalt + L + (ualt —2) — u(t —1)),

7. DISCUSSION AND CONCLUSIONS

For system ¥ defined by (1) no possibilities exist to reproduce at the

output an arbitrary reference signal starting from the time instant ¢ = 0.

We are able to reproduce the reference signals at the output with some time-

shifts and the smallest possible value of the time-shift is d; (the delay order)
for the ith output component. These smallest values can be realized if the

system of equations |

yl(t + dl)

yp(t;d„) ] = A(z(t), ult)) (11)

can be solved for u(t) for arbitrary [y;(t + dy), ..

~ yp(t + dp)]”.
Note that we cannot solve the system of equations (11) for u(%) in case

of the arbitrary left-hand side if some components of the vector function

A(z,u), as functions of the control, depend functionally on the others, or

equivalently, if
3

rank ÕUA(J:, u) <p.

The idea to generalize the notion of right invertibility is to represent the

functionally dependent components via the independent ones and apply to

the dependent eguations the one-step FTS operator and repeat the whole

procedure (say « times) until we obtain a system of eguations which can be

solved for the control u(t) interms of x(t) and y(t+l), y(1+2),..., y(t+a)
in case of an arbitrary reference signal, or it will become clear that the latter

is impossible. Ifit is possible to obtain a system of eguations which can be

solved for the control, then we are able to reproduce at the ith output y; an

arbitrary reference signal starting from a certain time instant o;; > d; with

a; > d; forsome j € {1,...,p}. Generalizations along these lines will be

the topic of another paper.
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MITTELINEAARSETE REKURSIIVSETE SÜSTEEMIDE
PAREMALT PÖÖRATAVUS

Ulle KOTTA

On uuritud mittelineaarsete rekursiivsete siisteemide klassi kuuluvate

siisteemide paremalt pooratavust, s.t. sisendeid ja véljundeid siduvate

korgemat järku diferentsiaalvorranditega kirjeldatavate — siisteemi-
de paremalt pooratavust. Olekumudeli puhul tuntud mdisted, nagu



hilistumisjéirgud ja paremalt pooératavuse erijuht, nn. (dy,..., d,)-nihkega
paremalt pooratavus, on iildistatud rekursiivsetele mittelineaarsetele siis-

teemidele. On tuletatud tarvilikud ja piisavad tingimused rekursiivsete

mittelineaarsete siisteemide (d, .

.., d,)-nihkega paremalt pooratavuseks.
Lõpuks on näidatud, et samuti nagu olekumudelitel baseeruvate siisteemide

korral, on ka rekursiivsete mittelineaarsete siisteemide puhul voimalik

vaadelda iildisemat pooratavuse maoistet.
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