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Abstract. New equations of motion of radiating elementary particles are derived by
taking account of the induced angular momentum (eccentricity) of the particles. The
equations satisfy all ten conservation laws and generalize the Lorentz—Dirac equation.
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1. INTRODUCTION

Equations of motion of interacting point charges taking account of
radiation reaction are a highly debated subject ['~®]. There exists an
enormous literature on the problem (see e.g. references to be found in
the surveys [*7]). In spite of numerous ingenious efforts, no better
equation than the “old” Lorentz—Dirac equation has been found. This
third-order equation, however, leads to unphysical runaway solutions,
therefore additional restrictions must be imposed upon solutions to
exclude the unphysical ones. There occur also undesirable effects such
as pre-acceleration and others (for details, see Jackson’s textbook [®]).
In this paper we outline a completely new approach to the problem.

Firstly, we make a fuller use of the invariants of the Poincaré group as
characteristics of elementary particles. Usually elementary particles are
characterized by their mass and spin. Shirokov [?] found two further
invariants of the Poincaré group, usually not applied in the theory. One
of these “neglected” invariants refers to the centre of inertia. In this
paper we admit that the interacting electron can be eccentric, i.e. the
location of the point charge and electron’s centre of mass (as well as
the corresponding velocities) need not coincide. We shall call the velocity
of the centre of mass dynamic velocity and the velocity of the point
charge kinematic velocity (cf. Dixon ['°]).

Secondly, we specify further a generic property of a fourforce, its
orthogonality to the four-velocity [''], and assume that the product of
dynamic velocity and the total fourforce vanishes, the latter being defined
as the sum of the Lorentz force and the radiation reaction force (the
radiated energy and momentum with the opposite sign).

The above two assumptions together with ten conservation laws give
us a new system of equations of motion, the Lorentz—Dirac equations
being the first approximation to the full system.
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Equations of motion ol regular multipole particles following from the
conservation laws have already been derived by Mathisson [7!?], renor-
malization problems in the case of point charges have also been solved
[*]. However, this does not mean that we have a unique translational
law of motion: different solutions of the ‘“dipole” (rotational) part of
Mathisson’s equations provide different translational laws of motion.
This law cannot be neglected, because point charges radiate the angular
momentum besides momentum, more exactly, they radiate the components
of the four-dimensional angular momentum which are related to the
motion of the centre of mass. If we do not admit the existence of the
corresponding induced angular momentum of the point particle, it is not
possible to require the persistence of all conservation laws.

In Sec. 2, we outline the derivation of the Lorentz—Dirac equation
from the Mathisson equations [®7''*], and on the basis of this deriva-
tion we continue to argue that the former is an equation of motion in a
noninertial frame of reference. In Sec. 3, new equations are derived.
They provide an explanation to radiated energy: the Lorentz force be-
comes dissipative due to the ‘“roughness” of an eccentric electron,
Solutions of the new equations are free from “runaways”, and the rest
masses of elementary particles turn out to be strictly constant.

The following notation is used throughout the paper: v* — kinematic

do>
velocity, u* — dynamic velocity, a“=7r—-, F% sy — radiation
reaction force in the Lorentz—Dirac equation, F% .4 — the negative of

the total energy and momentum radiated per unit of proper time, it is
the force that should be properly called radiation reaction force. Greek
indices take values 0, 1, 2, 3; the Einstein summation convention is
used. Only orthogonal Cartesian coordinates are used, indices are raised
and lowered with the Minkowski metric tensor n*P=ngg=diag(l, —1,

—1, —1); ve= (29, -z;/}/l — v%/c?).

2. THE LORENTZ—DIRAC EQUATION

More than a century ago H. Lorentz derived the radiation reaction

force Fueacty and equations of motion of point charges in the exterior
electromagnetic field by approximately balancing radiated and bound
energy, and considering quasiperiodic motions [*]. The resulting
Lorentz—Abraham equation is

d;; > -
m7=F+F(react). (1)

where F is the external force, and the radiation reaction force is

- 2 e2 d2 -
F(react)=§’c—3’gt_2' v. (2)

Here ; is the velocity of a point charge e with mass m and ¢ is the

velocity of light. In case the external force F vanishes, Eq. (1) has a
physically unacceptable runaway solution

;=const. -exp (3mc3t/2€%).
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The relativistic generalization of Eq. (1), the Lorentz—Dirac equa-

tion, can be found if we replace v with components of the four-velocity

v*, derivatives d/dt with the proper time derivatives d/dx, make use of

the Lorentz force F* and radiation reaction force F"(‘react):

o

A T Raaey ! 3)
u="_ Fayy, (4)
¢
. 5 (et ( d*v> v*vg d?vb )
(react) = 303 \" ge2 2 g2 /' (5)

Here F*P is the antisymmetric electromangetic field tensor. The second
term in the brackets on the r.h.s. (right-hand side) of expression (5)
has been found from the orthogonality condition ['!]

?react) 0 =0. (6)
Next we reproduce Mathisson’s derivation of Egs. (3) to (5). From

exact energy, momentum, and angular momentum balance the following
equations can be derived [®7 13]:

dpe
Addf Tk a/p2
< 1% T, (7)
Pe=muye4-n% no%,=0, (8)
dSx¢
= i s o B (9)
Here square brackets denote antisymmetrization, —Wuv*/¢? is an

alternative radiation reaction force, equal to radiated energy momentum

with the opposite sign, L?gd) is the radiation reaction torque, and S*#

is the angular momentum of a point charge.

SoB— Bab_} Db (10)
where B*f=-—BB2 js the intrinsic angular momentum (spin), and
Dob = 2yl Dol (11)

is the induced angular momentum; B%*fvg=0, D%,=0. In the case of
the Liénard—Wiechert potentials one has

2 2

W=;§%aaaa, (12)
4 e?

o E A Th (19)

If we want to take into account the magnetic moment of the electron,
the external torque L%F (to be found in [*']) should be included into
Eq. (9) and terms describing magnetic dipole radiation must be added
to expressions (12) and (13).

We note that momentum P% and angular momentum S*P in Eqs. (7)
to (9) are phenomenological inputs, the outcomes of a (nonunique)
renormalization procedure [®]: from infinite bound electromagnetic
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energy-momentum tensor infinite matter energy-momentum tensor is
subtracted (containing the Poincaré stresses [%]). In complete analogy
with point dipoles in classical electrodynamics, charged point particles
with mass dipole moment D* can exist. More rigorously, they are de-
scribed by induced angular momentum (11).

Assuming that dS*f/dv=0 and inserting expressions (8) and (13)
into Eq. (9), one obtains [ 7 13]

2 e?

n°‘=—§Fa°‘, (14)

and the translational law of motion (7) can be written in the following
form

2 2
L(mv“——i—a“)=1’°‘+—ce—aﬂaava. (15)

0 i 2 e2'da®

Here the explicit form (12) of W has been used. Shifting iy
T

from the Lh.s. of Eq. (15) to the r.h.s. and taking account of identities

o
(va0*) = aqa%+vq d;f =0, we obtain from Eq. (15) the

a=
iy dv

Lorentz—Dirac equation (3).
From expressions (4) and (5) it follows that the Lorentz force (4)
and the radiation reaction force (5) satisfy separately orthogonality

conditions, F%v,=0, - ) This may be a drawback of the

theory, indicating that the external force has a nondissipative character.
Herrera ['] claims that the only source of radiation energy can be the
work done by the external force, indicating thereby its dissipative nature.
Dissipative terms have been added to the Lorentz force by Mo and
Papas ['®].

It is difficult to interpret the Lorentz—Dirac equation properly.
The trouble comes from the first term in the brackets on the r.h.s.
of expression (5), the so-called Schott term. By integrating Eq. (3)
one has (p*=muv%)

b ‘2
p(e) — p (1) = | Fedv—

bof 2 e?
— 5 ] Werdet S 5 s () — a2 ()] (16)

Some authors argue (see e.g. [*]) that the nonvanishing last term on
the r.h.s. of integral (16) of the Lorentz—Dirac equation indicates
that the law of conservation of energy and momentum is violated. There
are others who claim that the missing energy comes from the Schott term.
This point of view is criticized by Herrera ['] who writes that ‘“‘term”
is not a material object and therefore it is not intrinsically endowed
with energy. We propose the following interpretation. The momentum
p* on the 1. h.s. of expression (16) is evaluated in a noninertial frame
of reference, while the true momentum P* is constructed from the
very beginning as a quantity in an inertial frame of reference [ 13].
dn®

dt

we enforce the vanishing of the part n* of the momen-

By accelerating the inertial frame of reference by a quantity 1]
2e?  da* "
3cdm  dt
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tum P* in Eq. (7) and introduce new terms into the radiation reaction
force. True, shifting terms from one side of the equation to the other
side does not change integrals of the equation, but it changes the
orthogonality conditions of the four-force and the four-velocity. Hence,

we must find new solutions to Egs. (7) to (9), satisfying the orthogo-
nality conditions in inertial frames of reference.

3. NEW EQUATIONS OF MOTION

Let us start by imposing the orthogonality condition upon the dynamic

velocity and the total force F?toz)EF“_“l_z‘ Wuv* By definition the
dynamic velocity u* is [!°] ¢

U= cPe/Pj i P¥= PP,
Inserting the value of P* from expression (8) we have
u*= (muv*+4n*)c/ymc2+nqun®, (17)

and the orthogonality condition reads

1
F"(‘m) uaEF“ua——C; Wuru,=0. (18)

The dissipative character of the Lorentz force F* in the last equation
is evident. From definitions (4) and (8) it follows F%*v,=0, n*ve=0,
and from Eq. (18) one easily finds

W=

A oy (19)
m

Equation (9) determines the induced angular momentum (11). This
equation can be satisfied by any value of a%* n* and BapB*P=const.

Let us find the restrictions put by condition (19) upon the trans-
lational law of motion (7), which can be written in the following form

dm dn>
P A Sy g

= W (20)

Multiplication of the last equation by v% aq, and n* and summation over
the index a gives (v*ve=c?)

dm dng

5 ' =— 21
i o dt w, (21)
maaa“—{—aa dt e (22)
maan“+-}--—d——(nanﬂ‘)=F°‘na, or (23)
2ady
10
— —— (ngn®) =—ma%*ng+mW. (24)
2 dr
d(v*neg) dn> x
By definition we have v*n,=0, hence ————=0 or vy 5 =—Q%Ng

and an equivalent form of Eq. (21) is
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c2m < =magn*— mW. (25)

By adding Eqgs. (24) and (25) we obtain

dm? 1
T TR e it

The square of mass M of an elementary particle is defined as the follow-

ing invariant of the Poincaré group M2=?2— Py P*. Taking account of
definition (8), we have

M2=m?+nun*/c2 (27)
From the last expression and Eq. (26) it follows that the mass of any

elementary particle satisfying condition (18) is a constant.
Let B®v=0. From Eqgs. (8) to (11) and (13) we find

v%vg ) ab® :
(6%_ c dt ‘_na_g—c?aa (28)
and by taking account of Egs. (12), (25), and (26) we have
db> ' 1 d
S R @),
me—— B (ngn®) (29)

We see that equations describing the backreaction of radiation are
nonlinear, and we propose to integrate them by the successive approxi-
mation method. The order-of-magnitude analysis of terms describing
the radiation reaction as well as the description of the cases when they
are relevant may be found in Jackson’s textbook [®]. In the case of
the electron we have 2e?/3mc®*=6.26 10~%* sec. In most cases of physical
interest (when extremely rapid changes of the external force are
excluded), the small parameter of the dimension of time 2e2/3mc3® can
be used as an expansion parameter. In the zeroth approximation we
have the well-known equation

e
ma“=—c— FaﬁUB.

From Eqgs. (28) and (29) it follows that n* is the first-order quantity,
and D% is the second-order quantity. In the first approximation

o= —— ——.ma% (30)

This solution coincides with solution (14), which gave us the Lorentz—
Dirac equation.

In the full theory self-accelerating solutions are excluded already
by condition (19): when the external force F* vanishes, the radiated
energy W vanishes as well, which in turn means that no acceleration
of charge is admitted. (References to papers discussing this aspect of
the problem may be found in [*].)

In this paper not all aspects of the radiation reaction theory were
treated. It is planned to continue the work in this field.
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A

EKSTSENTRILINE KIIRGAV ELEKTRON
Viino UNT

Kiirgavate fundamentaalosakeste liikumisvorranditel, nende hulgas ka
iildkasutataval Lorentzi—Diraci vorrandil, on tdsiseid puudusi. Kdesoleva
t66 eesmirk on tuletada uued litkumisvorrandid, tuues kiirguspidurduse
teooriasse «madrkamata jdanud» Poincaré rithma invariandi, elektroni
ekstsentrilisuse, mis kirjeldab punktlaengu asukoha ja tema massikeskme
asukoha erinevust. Lisaks sellele on postuleeritud summaarse nelijou ja
diinaamilise nelikiiruse ortogonaalsus. Nii on saadud uued liikumisvor-
randid (19), (20) ja (28), mis sisaldavad Lorentzi—Diraci vérrandit
kui esimest ldhendit tdpsele vorrandisiisteemile. Uutel vorranditel puu-
duvad <«drajooksvaid» osakesi kirjeldavad lahendid, nad annavad elemen-
taarosakeste massi konstantsed vddrtused ja seletavad kiirgust ekstsent-
rilisele elektronile méjuva Lorentzi jou dissipatiivse iseloomuga.

3KCUEHTPUYECKHN HU3JYYAKOUIHHA SJEKTPOH
Bsaiino YHT

Bce npensioxkenHble K HAacTosIlEMy BPeMEHHM YPaBHEHHsS ABHIKEHHS H3-
Jy4Yawmux (yHIaMeHTaJbHBIX 4YaCTHIl, BKJiouas obuenpH3HaHHOe ypas-
Henne Jlopenuna—Jlupaka, HMEIOT cepbe3Hble HeZOCTAaTKH. B nanHoi pa-
6oTe BHIBOASITCS HOBbl€ YpPaBHEHHS] NBHKEHHS TYTeM BBEJeHHS B TEOPHIO
TOPMOYKEHHS] H3JIyueHHeM <«He3aMeueHHOro» HWHBapHaHTa rpynnbl [lyaH-
Kape — 3KCIeHTpPHCHTeTa 3JeKTpoHa. To ecTb AONMyCKaeTcsi, 4YTO MeECTO-
HaXoXKJeHHe TOYEeYHOro 3apsila H ero LeHTP HHEePLHH MOryT He COBNAaAaTh.
B nononneHHe K 3TOMY NOCTYJHPYIOTCS OPTOrOHAJbHOCTH MOJHOH YeThIpex-
CHJIBI H IHHAMHYecKoil yeThipexckopocTH. Hoseie ypasuenus (19), (20) u
(28) comep:kat B BHIe mepBoro npubJaHKeHus ypasuenne Jlopenua—Jlu-
paka, y HHX OTCYTCTBYIOT «y0eraiouiie» pelieHHs H OHH 1ai0T MOCTOSHHHIE
3HAYEHHsS AJIs Macc 3JIeMeHTapHbIX yacTHI. MexaHH3M H3JyuyeHHs oObsic-
HSIeTCSl JHCCHMNATHBHOCTBIO CHJBl JlopeHla B cjyyae 3IKCIUEHTPHYECKOTrO
3JIeKTPOHA.
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