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Abstract. A generalization of Poincaré translations into a nonassociative algebraic
system called the local geodesic loop is proposed. Two BRST-like nilpotent operators
based on the local geodesic left and right translation matrices are constructed. As an

explicit example, the local geodesic translation matrices are calculated in the space-
time of a weak plane gravitational wave.
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1. INTRODUCTION

The BRST quantization [!], which is up to now the most advanced
method of quantization, is a generalization of Dirac’s scheme of quanti-
zation for physical systems with constraints and gauge freedom. Both
methods coincide.if the algebra of constraints closes and its structure
constants do not involve fields. In the case of open gauge algebras
and field-dependent structure functions only the BRST quantization is

applicable. Usually an explicit construction of the BRST generator is
based on the algebra of constraints. However, one of the main points
of the BRST quantization lies in the statement that different physical
states correspond to the different cohomology classes of the nilpotent
BRST operator, and physical observables must commute with it.

There exist physical systems for which a consistent quantum theory
cannot be constructed by means of any of the available quantization
schemes, e.g. the gravitational field. Nevertheless, we can try to
construct a reasonable nilpotent operator that can be used for defining
cohomology classes and investigate the resulting quantum theory. A

geometrical BRST operator Q has been proposed by Bars and Yankielo-
wicz [2]. It involves an infinite-dimensional algebra of the modified
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Poincare group where the torsion tensor and the curvature tensor act as

structure functions. The nilpotency of Q turns out tobe a consequence
of the differential geometrical Bianchi identities. An analogous geo-
metrical BRST-like operator for a N-dimensional differentiable manifold
with a zero curvature but a nonzero torsion tensor has recently been

given also by Okubo [3]. In the present paper we investigate a possibility
of using our earlier work [*] on the role of geodesic multiplication in the

theory of gravity for constructing BRST-like operators according to
Okubo’s scheme, and for discussing their possible geometrical and

physical meaning.
Geodesic multiplication of points of a differentiable manifold with

an affine connection is a generalization of constant translations of a

flat torsionless manifold which allows to transform straight lines (geo-
desics) into parallel straight lines. In the case of a flat spacetime,
constant translations form a subgroup of the Poincaré group, the Abelian

group of Poincaré translations. It can be gauged. e. g. constant trans-
lations x—x+a, a=const. can be replaced by point-dependent transla-

tions, x—>x-+a(x). The corresponding gauge group is the group of general
coordinate transformations (diffeomorphisms)., and the gauge field is
the local frame of reference es*(x) [3]. But the mathematical structure
of the following gauge theory differs in some essential points from that
of a standard gauge theory. We ргорозе to generalize the group of
Poincaré translations into a geometrically defined algebraic system called
the geodesic loop which has the geodesic multiplication as a binary
operation. Due to the nonassociativity of the geodesic multiplication, it
does not form a group and the methods of the conventional gauge theory
cannot be applied. However, using Okubo’s construction it is possible
to write down two BRST-like operators containing the algebra of vector
fields which generate left and right infinitesimal geodesic translations
of space-time points. Cohomologies of these BRST-like operators turn

out to be analogous to the de Rham cohomologyv of the space-time.
The paper is organized as follows. In Sec. 2. Okubo’s construction

of a BRST-like operator is brieflv reviewed. In Sec. 3, the notions of
the geodesic multiplication and the geodesic loop are introduced and
their main algebraic properties are described. In Sec. 4, the left and
the right geodesic translation matrices are used for constructing two

geometrical BRST-like operators. Our main idea is to derive these

operators not directly from the geometry of the space-time, but from
the geometry of the geodesic loop. In Sec. 5, explicit expressions for the
left and the right geodesic translation matrices are calculated in the

case of a weak plane gravitational wave and the corresponding paralle-
lizing torsions of the geodesic loop are determined. Section 6 is devoted
to the problem of physical state vectors and their cohomologies.

2. OKUBO’S CONSTRUCTION FOR A BRST-LIKE OPERATOR

Okubo [*] has proposed the following formal construction of an

anticommuting nilpotent operator for a N-dimensional differentiable
manifold with local coordinates x*. Let us introduce a N-bein field

e’ (x) that is invertible, i.e. there exists also the inverse matrix е: (%),

WOB — 68 BDA —— RMeben 6%, an e 6%. (1)

In the framework of the Cartan formalism, e: (x) determines the basis

1-forms й,
А

—

o ——e':L ах“. (2)
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Let us suppose that the connection 1-forms ®S =T4,6? vanish,

04=0, Г‚ ==o. (3)
From the Cartan structure equations

do’ +oi \ OB=OQA4, (4)

dog +ofA\ 08 =Q4 (5)

it follows that the curvature 2-form Q 4 also vanishes, Q 4 =O, апа

the components of the torsion 2-form £2A=—;—wa dx*Adx* are de-

termined by the inverse N-bein field Cfu
due‘: — д\›еі =SA

°

ам
(6)

Although the connection 1-forms o? and the Riemann curvature tensor

vanish, the connection coefficients I";W in local holonomic curvilinear
coordinates x* may acquire nonvanishing values due to the coordinate
transformation from anholonomic flat coordinates ya to Xy

oy* (%)
—

o e, (1), (7)

[ =eh (eheß T2, 40yeD ) =@, дуе. (8)

For constructing a BRST-like operator Q, Okubo introduced coordinate-
independent anticommuting ghost-like operators c4, ba satisfying

bAbß+bßbA\=O, сАсВ--сВсА ==(, (9)

bACB-I—CBbA:Öž. (10)

They are covariantly constant if considered in holonomic coordinates xF:

b„(x)=e':t (x) ba, Ь„…Ед„д„—щд Ь, ==o, (11)

с`(х)== * (x)c*, ¢, Eö„c*'-l—l“*;u с*== 0. (12)

The definition of Q as given by Okubo [*] reads

Direct computations using the Bianchi identity

O=c"(x) Õ„+—;c“ (х)* (х) 5% (x)b(х). (13)

dQ%+O4l A QB=Q4 / mP (14)

confirm that Q is nilpotent,

2Q?={Q, Q}=o. (15)

In a sense, operator Q is a generalization of the exterior differential

operator. It has been known already for a long time that the BRST

generator in the classical constrained dynamics can be considered as an

exterior differential operator along orbits of the gauge group in the

phase space of a mechanical system [°] or in the configuration space
of a gauge field [7]. Okubo’s operator Q has an essential difference from
the latter ones: Q is a generalization of the exterior differential in the
differentiable manifold (space-time) with holonomic coordinates x®, but
the conventional BRST generator is a generalization of the exterior
differential in the space of the gauge group.
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3. GEODESIC MULTIPLICATION

Let us consider a 4-dimensional differentiable manifold M with an

affine connection (the space-time). Its geodesic lines (autoparallels)
x“(f) must satisfy the following differential equations:

а?хи ахУ dxP

в ааО (16a)

where I‘l;p (x) denote the affine connection coefficients. Let М.M
be such a neighbourhood of e = М where geodesic lines emerging from
¢ do not intersect. In general, M, is a finite region of M which does
not contain singular points. Solutions of Ед. (16а) at initial values

Ц
x" (0) =e", %—‘tz():X" determine the exponential mapping T.M—
- M.: X—>x:=expeX :=x(1;X). A рагаПе! transport mapping
T TeM— TyM along a geodesic line y(s) emerging from e is given
as a solution of the Cauchy problem

dX'u dy”
eEZ /

—Xu

7 +P s
XP=O, X'»(o)=Xw (16b)

Using the exponential mapping and the parallel transport mapping, the

local geodesic multiplication of points x, y = M, can be introduced [*°]:

xy=Ly=Rux=(expy° 1W ° ехр-!) х. (17)

The local geodesic multiplication can be constructed in such a neigh-
bourhood M. where all required exponential mappings and parallel trans-

port operations are well-defined local difieomorphisms.
In general, the local geodesic multiplication need not be commutative

and associative. In the Riemann normal coordinates with the origin in e,

equations for geodesic lines (16a) and parallel transport (16b) can be

solved, using expansions in local coordinates. Direct calculations [!°]
demonstrate that the commutator and the associator of the local geodesic
multiplication are intimately related to the torsion S*;p (x) and the

curvature tensor R*:„pa (x) of the space-time M:

((y-x)z‘-(x-y) )M=CIL;p oy, (18a)

Cgp =2St;p (e), (18b)

((x- (y-2)) 7! ((x:y):2) )"=A*;poxvy9z°+ H. (19a)

Alv*pa =R';po (е) — V„Sl;p (e). (19b)

Here xz‘ denotes the left inverse element of x, xz‘-x=e, V, is the

covariant differentiation operator and dots mean higher-order terms.
The local geodesic multiplication converts the neighbourhood M. into

the space of an algebraic system called the local geodesic loop [!"!'?].
Point e М is the unit element of the loop.

Local geodesic multiplication (17) determines the following infinit-
esimal left (L) and right (R) translation matrices:
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Ol(x:
(x-y)*=y"+LY (y)x*+..., L (y) E—%ilxq, (20a)

=x*+R* (x)y“+..., R* (x) E—a(—g'yglt-'yze. (20b)

At general coordinate transformations x'=x'(x) they transform as

bitensors, i.e. they are contravariant vectors in x and covariant vectors
HET

LW (X')==AK(x)E% (x) (A7 (e), (21a)

RE (x') =AK(x) R# (x) (471)%, (е), (21b)

where Al;'=äx"'/6x”. Although the upper and the lower indices of

L“, R* do not transform independently, these matrices can be considered

?V? de'fÄ’llling two preferred local vierbein fields in the neighbourhood
: fet the differentiable manifold M with an affine connection be torsion-

less, Sgp (x)=o, and endowed with a metric guv(x) that is compatible
with the connection,

Voguw=o, (22a)

1
Г’;„ ='2' @^° (@ис»--Еуо,ц — Вимо). (22b)

Then the main part of commutator (18) vanishes and the main part of
associator (19) equals to the curvature tensor,

Al\lvpa =Rspa (e)

If the metric {ensor guv(x)is a solution of the Einstein equations, then
the associator A*v*pa eguals to the value of the curvature tensor RÜpa (e) in

the point e of a physical (dynamical) space-time.

4. THE CONSTRUCTION OF LOCAL BRST-LIKE OPERATORS

Let us consider the space of the geodesic loop M. with the left and

the right infinitesimal geodesic translation operators Lyu(x), Ru(x) а$

defined by Eq. (20),
д

Le(x)=Li (x) Ralx)=R% (1) 77 (23)

They generate two vector field algebras,

[La(x), Lp(x)] =AY, (x)Ly(x), [Ra(x), Rp(x)]=BY, (x) Ry(x)

A, = (Lv (9uLY)— L¥ (9ul}))L,

B = (R% (ouß})— R¥ (duRY) )К,

In the case of left (right) invariant vector fields on a group manifold,
we have AY, =-—BY,=const=—C*,, and [La, Rg]=o. In the case

of a loop manifold these relations do not hold.
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Both vector fields, Ly (x) and Ra(x), can be considered as a preferred
local frame of reference that can be used for introducing a parallelizing
torsion in the space of the geodesic loop. Let us suppose that the con-

nection l-forms and the curvature 2-forms vanish so that е second
Cartan structure equation (5) is identically satisfied. Then the corres-

ponding connection coefficients in local holonomic coordinates

L’:W, R’;„ are given by vierbein fields according to Eq. (8):

13 =L\O,(L-1)9, R =R\ö,(R-1)9. (24)

This means that we can introduce three different connection
coefficients to the same neighbourhood M., the affine connection
coefficients I of the space-time and the connection coefficients L*', R},
induced by the local geodesic multiplication. Note that L:"w and R’;W
depend in a sophisticated way on F’;w, since the local geodesic

multiplication (17) is determined by geodesics (16a) and parallel trans-

port operator (16b).
From Egs. (24) two torsion tensors of the space of the local geodesic

loop can be calculated as well:

0* —[^ — A
WV v v’

%=R —
©

L
u H RВУ

Rvu le ° (25)

Note that the corresponding Cartan first structure equation (4) for them

dL*=o* аК==0%
L R

can be considered as having been obtained from the structure equation
of the Abelian group of Poincare translations,

[Pa, Pp]=o, dP*=o

as soft-group manifolds [!*], ['°]. However, in the general case of a

soft group, the left (right) invariant vector fields P, are substituted by
arbitrary vector fields. In our case, the vector fields Ly, Вв аге not

arbitrary but are generated by the geodesic multiplication.
Now, following Okubo’s construction, two local anticommuting nilpo-

tent BRST-like operators can be defined using definition (13):

Q=0t (x) Dyt 0() (x)0%, (). (x), (26)

Q=c*(x)d,+ %c"(x)cv(x)ß’;w (x)ba(x). (27)
R R R R R R

They can be considered as generalizations of exterior derivative, not in

the space-time but in the space of the geodesic loop. Okubo’s construc-
tion implies

Q’={Q, Q})=o, Q*={Q,Q}=o, (28a)
ADALL L R R R

and indicates that

{Q, Q} =O. (28b)
L R

The possible physical meaning of BRST operators Q and Q must
L R

follow from the properties of their action on suitably defined space of
state vectors.



3 Eesti TA Toimetised. F * M 4 1995 443

5. AN EXAMPLE: THE SPACE-TIME OF A WEAK PLANE

GRAVITATIONAL WAVE

For explicitly determining the expression of the local geodesic product
of two arbitrary points x, y =M. of a manifold M with a given affine

connection I";w (х), we need to integrate Eqs. (16a,b) for geodesic
lines and parallel transport in arbitrary directions. It turns out tobe
analytically a rather complicated task even in the seemingly simple case

of a 2-sphere. To give an example that can be analytically worked out,
let us obtain explicit expressions for the left and the right translation

operators and the corresponding parallelizing torsions in the case of the

physical space-time of the weak plane gravitational wave.

The metric tensor can be given as perturbations around the Minkowski
metric:

uv=Yvn- Ayy,

n“’v=diag(—l’ +l) +lr +l)°

In the case of a polarized weak plane gravitational wave moving in

t[}llöe] direction of x the only nonzero components of Ay in the TT-gauge
are

hyy=-—h;ız=A cos @(t—X).

Here A=const.,, A<l, is the wave amplitude, and all subsequent equa-
tions hold in the linear approximation in A.

In these coordinates the equation of a geodesic line with a tangent
vector X* at a point e can be easily integrated, yielding

g*(t) =er+-Xrt+AU [sin @B (cos wCt—1) +cos wß(sin oCt — wCt)],

where we have denoted

B=e°—e!, C=X9— X!

U°=Ul———————l-—
s [(X2)2—(X9)7],

eK X®
OE

оС оС`

Let us choose the point e tobe a unit element of the geodesic loop and

let g, h be two points from its neighbourhood. We denote by X“ and Y“

the tangent vectors of geodesic lines, joining the point e with the points
g and h, respectively. -

To calculate the product of the points g, h, we must integrate the

corresponding equations of geodesics (16a) and of parallel transport
(16b) of the tangent vector X*. Direct but lengthy calculations give the

following result:
°

kt=(h-g)t=
—g*+h* — er+AUH[ (sin oß’ — sin @B) (cos oC —1)+

-+ (cos B’ — cos wB) (sin wC — 0C)]+
АУ

+—2—Ъ-— [cos @B — cos o (B+D)],

where

B'’=W —W, D=Y'—Y!

VO.___. VI=X2Y2 — XSYS,
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V2=CY+DX?, Vi=—CY?— DX3.

The previous equations contain no singularities if C=X°— X'=o or

D=Y'— Y'=o. The equations corresponding to these special cases can

be obtained by just taking the limit C—o or D—o.
From the expression of the geodesic multiplication we can calculate

the matrices of the left and right translations, respectively (we have
taken e=o for simplicity): .

0 0 H il
t— X t—x

0 0 Yy 2

L=l+At: t—x t—x

Yy _ 1 0
—- х —х

z z

r r
—

y2_22 y2_z2

U T
y2__z2 y2_z2

oa oa
8

-л —х

2z 22
2 0

—- х —- х
0

where

_
cr

E==sin—

and / is the unit matrix. Taking into account that we are working in the
linear approximation in A, their inverses differ only by the sign in front
of the second terms.

Now let us calculate torsion tensors (25), corresponding to connec-

tions (24) in the space of the geodesic loop, obtained from the left
and the right translations, respectively. To keep the expressions compact,
we introduce some additional notations:

__ @sin ® (f —x)b=
2(t—x)

°

»

sin"’—————m(t;x)
Q—

(t__x)2
,

S=P—o,

—

у? — 2?
- T—(2Q—P)——t—_—}—.

Now we can write down the components of the torsion tensor obtained
from the left translations
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0 0 yS —2S

gl—p2=2] ° 0 0 —Q(t—x)
L L —yS 0 0 —Q((t—x)+4=2S|

25 QU—x) QUt—x)—2zS 0

0 —yS P(t—x)4+yS —Q(t—x)

03=A yS 0 —yS Q(t—x)
L —P(t—x)—yS yS 0 0

Q(t—x) —Q(t—x) 0 0

0 Q(t — x) +zS —2B —P(t—x)

ё— А
—0(#— х) —гs 0 г5 0

L 28 —2B 0 P(t—x)

P(t—x) 0 —P(t—x) 0

and the right translations

0 2Q2z+T —T —2Qy

Qla —2Qz—T 0 T 2Qy
R R T —T 0 0 ,

2Qy —2Qy D 0

0 —2yS 2yS —2Q(t—x)

03 —А 2yS 0 —2yS 2Q(t—x)
R —2yS 2yS 0 0 ‚

2Q(t—x) —2Q(t—x) 0 0

0 20(—х) +-2г® —2гs 0

е—А
—2Q (t —х) — 2г5 0 228 0

R 228 —228 0 0}

0 0 0 0

The BRST-like operators can be obtained in a straightforward way,

substituting these values into Eqs. (26), (27). To ensure the correctness

of the result, one can check that the Bianchi identities are indeed satis-

fied. Therefore it follows directly that Q?==o, Q?=o.
L R

6. QUANTUM THEORY

In the conventional BRST quantization, the starting point is usually
the Lagrangian of the physical system that determines the equations of
motion and constraints. Upon quantization the Fourier coefficients in

the solutions of the equations of motion are regarded as creation and
annihilation operators. As distinct from this case, in our theory the
solutions of the Einstein equations are not regarded as operators. Compo-
nents of the classical curvature tensor act as structure functions of the

geodesic loop. Its left and right translations determine two preferred
local frames of reference that allow us to construct two BRST-like opera-
tors (26), (27). In a general case they do not commute, so the complete
quantum theory must contain both of them. They possess a common

system of ghost operators ¢, b but do not contain any creation or annihila-
tion operators of gravitons (quanta of the gravitational field). Conse-

quently, Fock states of the corresponding quantum system contain only
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ghost quanta. The background space-time remains tobe a continuous
differentiable manifold, possibly with a nontrivial topology.

Okubo considered in more detail the case where bu.(x) are interpreted
as annihilation operators. Then the vacuum state is defined by

bu(x)]|o>=o

and the Fock space consists of vectors

|‹о„>г=;°щ___ип (x)cti(x). .. cha(x)]|o>.

He demonstrated that ghosts c* can be identified with differential forms
dx* and the resulting cohomology of the BRST-like operator Q turns

out tobe isomorphic to that of the standard de Rham cohomology of the

underlying manifold M. In his theory, the local frame of reference ea®(x)
is arbitrary. Frames of reference L% (x) and RY (x) used here have

a definite geometrical meaning as the infinitesimal operators of the
left and the right geodesic translations.

Let us define the vacuum state as

ba|o>o.

It is equivalent to Okubo’s definition, since the coordinate-dependent
operators b, (x) are obtained from b 4 by means of multiplying it with a

regular matrix, b„(x)=b‚lefi (x). In our case there are two preferred
irames of reference, L“ (x) and R“ (x), and, respectively, two sets of

annihilation operators bu(x)=ba(L-7')% (x) апа Ь„(х)=Ьа(К'°‘)Ё (х).
L R

From the unique vacuum state

ba|o>=o
we obtain two conditions,

Ёи(х) |o>=o,

gu(x) |o>=o

Owing 10 the regularity of the matrices L“ (x) and R“ (x), postulating

any of these conditions forces the validity of the other two. The Fock

space can now be defined by

|'ШП> =fa.....a‚.Ca‘ e С°‘"|o>э=
=fu....un (X)f""'(X). .. i“"(x) |o>=

= В(x)c(X). ..CH(x)LO>.
R R R

Therefore, any state can be represented in terms of either only operators
c*(x) or only operators c*(x). The coefficientS fyu,..un(x) are related
L R

through the transformation matrix from one preferred frame to another

(Arr)*= (L)% Ry

Note that indices u, v refer to the same coordinate system.
In the standard BRST quantization, the physical states are obtained

as cohomologies of the BRST operator. By analogy, the cohomologies
of our BRST-like operators are derived from the expressions for the

action of nilpotent operators Q, Q (see (26), (27)) in the space of state
L R

vectors |wn>:
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Ql(l)n> =oAfu....unc,“cu'
** , C“"I0>,

L L LL L

Qlon>=o)fu, pcrem . .. omn|o>
RRR R R

that have the same structure as differential n-forms. Notice that it is
important to have here the same kind of creation operators in each
expression. Then the cohomologies for Q and Q are analogous to the

L R
standard de Rham cohomologies. However, the physical states defined
by these cohomologies are different because of the different creation
operators associated with the same equivalence classes of coefficient
functions. The reason for this is that ghosts reflect the symmetry under
transformations and these can be either left or right shifts in our case.

There is also another possibility for defining ghost operators. We
can identify the coordinate-dependent ghost operators.

cY (x) =f“(x) =§”(x), bu(x)=bu(x) =gu (x).

Then we have, in fact, started with two sets of coordinate-independent
ghost operators, such that

L 5 (x)c*=c*(x), (L-!)% (x) ba=bu(x),

Ry (er=ct(x), O,
The transition matrix between the left and right coordinate-independent
ghost operators is now

(VEALRS
The Fock space is defined by

|on>=fu,u(%) (x)...c*(x)]o>
and the action of Q, Q is

L R

Qlor>=Q|on>=o:fu..uc*c* ...c#*|o>.
L R

Its cohomology is analogous to the standard de Rham cohomology of
differential forms.

7. DISCUSSION

There are several facts that indicate a lpossible role of geodesic
multiplication in the theory of gravity [*!7'B]. In the case of а flat

space-time with orthonormal coordinates x,, the right and left geodesic
translations coincide, Rflat=Lllat, The geodesic multiplication x-x-a=

=a-x describes a rigid shift of the space-time, xt*—x*+4a*, a*=const.
The latter transformation 1$ a Poincaré translation. In the case of a

curved space-time, matrices of infinitesimal left and right translations
are different, as has explicitly been demonstrated in Sec. 5. They also
have different meanings. An infinitesimal right translation given by
Eq. (20b) describes an infinitesimal shift of a point x (or a geodesic
line x(¢)) in the direction of y (Fig. 1). An infinitesimal left translation

given by Eq. (20a) describes an infinitesimal ähift of a point y in the

direction that is parallel to the tangent vector —-—%%e-—)—- (Fig. 2).
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The geodesic loop has a close connection with the group of general
coordinate transformations (diffeomorphisms) which is sometimes con-

sidered as the gauge group for the theory of gravity ['3]. Left and right
translations of a loop generate a group that is called the Albert group
of this loop ['''*]. Nonassociativity of the loop can be measured by
the deviation from the unity of the following elements of its Albert

group,

L(g h)=LZ, LeLn, R(g h)=Raß'R}', M(g, h) EREL;IR;th-(Qg)
In particular, the left and right translations (17) L. and R, of the local

geodesic loop M. generate a subgroup in the group of space-time
diffeomorphisms, the Albert group of M. Indeed, the left and right
geodesic translations (17) determine diffeomorphisms given by

X'yEnyEßyx, Lx, RyEDiffMe. (30)

The pair (L, R) of the maps x—>Lx, x—>R„ can be considered as a

regular (bi)representation of the geodesic loop M.. However, the ana-

lytical description of the Albert group of M. is extremely complicated
due to the definition (17) of geodesic multiplication that involves inte-

grations of geodesic and parallel transport equations.
In a full theory, the space-time may contain also quantized matter

fields. According to the idea that the geodesic loop is the most natural

generalization of the Poincaré translations, matter fields may be de-
scribed by suitable representations of the geodesic loop. In this way onc

can achieve the replacing of the infinite dimensional group of diffeo-

morphisms Diff M by finite dimensional geodesic loop and its Albert

group.
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Fig. 1. Right translation as an infinitesimal

shift of a geodesic line x(f) in the

direction of y.

Fig. 2. Left translation as an infinitesimal

shift of a point y in the direction that is

ах (е)
parallel to the {апреп{ vectorТ
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GEODEETILINE KORRUTAMINE JA GEOMEETRILISED

BRST-SARNASED OPERAATORID

Piret KUUSK, Jüri ORD, Eugen PAAL

Poincare translatsioonid on üldistatud mitteassotsiatiivseks algebra-
liseks süsteemiks, mida nimetatakse geodeetiliseks luubiks. Lokaalsete

geodeetiliste vasak- ja paremnihete maatriksite abil on konstrueeritud
kaks BRST-sarnast operaatorit. Niitena on arvutatud lokaalsete geo-
deetiliste nihete maatriksite ilmutatud kuju norka gravitatsioonilist tasa-
lainet kirjeldavates aegruumides.

ГЕОДЕЗИЧЕСКОЕ ПРОИЗВЕДЕНИЕ И ГЕОМЕТРИЧЕСКИЕ

БРСТ-ПОДОБНЫЕ ОПЕРАТОРЫ

Пирет КУУСК, Юрий ЭРД, Эуген ПААЛ

Предложено обобщение трансляций Пуанкаре, приводящее к неас-

социативной алгебраической системе, называемой геодезической лупой.
При помощи матриц правых и левых геодезических трансляций скон-

струированы два БРСТ-подобных оператора. В качестве примера
вычислены матрицы локальных левых и правых геодезических транс-
ляций в пространстве-времени слабой плоской гравитационной ВолнЫ.
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