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Abstract. The class of parallel submanifolds M™ in Euclidean spaces E™, character-
ized by Vh=0, is extended to the class of M™ in E® with VRL=0. A surface M?

in Em, satisfying VRL1=0, is proved to be locally either (i) a M? with flat VL or
(i) a M? in a E*c E™ or in a S*(r) < E° < E", whose normal curvature ellipses have
the same constant area. Here the additional condition for M? to be minimal yields:
(i) M? lies minimally in a E®c E™, (ii) M? is a Veronese surface in S*(r)c E5 < E
or its open part (minimal in S%(r)).
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1. INTRODUCTION

1.1. Parallel (or symmetric, extrinsically) submanifolds. Let M™ be a
submanifold in a Euclidean space E” and h its second fundamental
form. A series of interesting investigations is made concerning M™ in
E" whose h is parallel with respect to the van der Waerden—Bortolotti

connection V=V @ V4, i.e. VAh=0. For example, such a M™ is proved
to have a totally geodesic Gauss image ['] and to be locally (and, if
complete, globally) symmetric [?] with respect to its normal subspaces
in E®. The result [?] that every such complete M™ is a standardly
imbedded symmetric R-space makes it possible to use the classification

of these spaces [%]. The submanifolds M™ with Vh=0 are called
parallel [*] or, especially if they are complete, symmetric (extrinsical-
ly) [*5] also the symmetric orbits [°].

For surfaces the above-mentioned classification means that a parallel
surface M? in E" is an open part of one of such symmetric orbits as plane
E?c E*, round cylinder S'(r) XE'< E® < E*, Clifford surface S'(r’)X
X8%(r")c E* < E®, sphere S%(r)c E®c E", Veronese surface V2(F)c

c S4(r)c ES c E* (F=rYV3). The first three have flat v (i.e. V and
V<L are both flat), a S?(r) has flat V! but nonflat V, a V2(F) has
nonflat V+ and nonflat V.

1.2. Semiparallel (or semisymmetric, extrinsically) submanifolds. A sub-
manifold M™ in E", satisfying the integrability condition R<h=0 of

the system VhA=0, where R=R @ R* is the curvature operator of v, is
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called semiparallel [7], also semisymmetric (extrinsically) [%°].
Geometrically such a M™ can be characterized as a 2nd-order envelope
of parallel submanifolds ['°].

A parallel M™ is obviously semiparallel. The general semiparallel
submanifolds M™ in E* are up to now completely classified and described
only by m=2 (see [7]) and m=3 (see [!']), also by flat Vi [!213]
(in particular, by m=n—1 and m=n—2).

For surfaces this gives that a semiparallel but nonparallel M? in E"
is either a M? with flat V (i.e. R=0) or a nontrivial 2nd-order envelope
of Veronese surfaces; the existence of the latter by n>5 is proved
in [ 15].

An interesting subclass of semiparallel submanifolds M™ in E*
consists of 2-parallel submanifolds, characterized by V(Vh)=0, i.e. the

third fundamental form Vh is parallel. They are classified completely
by m=2, by m=3, and by flat V1 (see [!617.1%]).

Note that semi-2-parallel submanifolds M™ in E* with R<Vh=0
are not investigated properly yet, even by low dimensions.

1.3. Submanifolds with a parallel normal curvature tensor. These are
the submanifolds M™ in E* with VRL=0, ie. R* is parallel with
respect to V. Their class is nnother extension of the class of parallel

submanifolds, because VhA=0 yields VR*=0 due to the simple tensor
algebraic relation between R' and h. All normally flat submanifolds,
characterized by R+t=0 (i.e. V<! is flat), belong obviously to this class.

Here also the prefix “semi-” can be added, replacing the system

VRL=0 by its integrability condition R °R:=0. The submanifolds,
satisfying the last condition, are called the submanifolds with a semi-
parallel normal curvature tensor. All semiparallel submanifolds belong
to this class, because R °h=0 implies R~ R+-=0.

1.4. Surfaces with parallel R'. The submanifolds M™ in E™ of the new
classes, introduced above, have not been investigated in general yet. The
aim of this paper is to start with surfaces, i.e. with the case m=2.

Below all surfaces with VRL=0 are classified and described, also all
minimal surfaces among them are found out.

Theorem A. A surface M? in E" has the parallel normal curvature

tensor R: (i.e. VRY=0) if and only if every its open connected part
is either
(i) a surface with flat V- (i.e. R-=0), or
(ii) a surface in a E*<E" or in a S*(r)c E°c E" whose normal
curvature ellipses have the same area k==const.

Here the normal curvature ellipse of a surface M? in E" or S"(r) at
a point x & M? is the locus of end points of the normal curvature vectors

h(X, X) applied from x for all XeTM? |X|l=1, ie. is {z|z=
==X X))

The parallel surfaces are here included in (i), except the Veronese
surfaces V?(F), which belong to subclass (ii), because the normal
curvature ellipses of a V2?(F) are congruent circles of the area 72

Moreover, a V2(7F) is a minimal surface of S*(r), F=r}3, ie. every
such circle is centred at x & V2(F) in spherical geometry.

The problem is whether there are any other minimal surfaces among
the surfaces of Theorem A. The following theorem gives an answer to it.
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Theorem B. The only minimal surface of Theorem A are the
minimal M?>c E3c E™ (type (i)) and the Veronese surfaces V?(F)c

< S'(r)c ES < Er, F=V3 (type (ii)).
Remark 1. By means of the formulae below (Section 2.2.) it is easy

to establish that every surface M? in E” has a semiparallel normal
curvature tensor, i.e. R°R+=0 is satisfied identically for the surfaces.

Remark. 2. The fact that the only minimal surface in a 4-dimensional
space form with normal curvature ellipses of constant area k is a

Va(r V§) in 8*(r), k=r—2%, was established in [!°] more than thirty years
ago. Since ['°] is not easily available mow, this fact is proved again
in the course of the proof of Theorem B.

Remark 3. For semiparallel surfaces in S*(r) with nonflat V* the
following assertion is proved in [* ?']: such a surface is minimal if and
only if it is a Veronese surface in a S*(r)< S8*(r). In the proof a result
of [??] is used that a minimal surface with the Gaussian curvature

gr‘2 in 8"(r) is a Veronese surface in S*(r); for n=4 this result is

deduced already in ['°] by more general assumptions (only constancy
of the Gaussian curvature is needed).

2. APPARATUS

2.1. Adapted orthonormal frame bundle. Let M™ be a submanifold in
E". The bundle O(E") of orthonormal frames {x; e, ..., e"} (where a
point x € E" and its radius vector with respect to an origin o& E" are
identified) with derivation formulae

dx=¢ew!, de,=e,mj . o)j +'°°'J =0
(independent of o) and structure equations
Joot I 7 SLNK I
do'=0’ \ 0!, do)=0f A\ o}

(obtained from the previous ones by exterior differentiation, where
I, J, K etc. run {l, ..., n}) can be reduced to the adapted bundle
O(M™, E") taking x & M™, e, T.M™; i, j etc. run {1, ..., m}. Then
ex=TLM™, a, B ete. run {m+1, ..., n} and o*=0 hold. Hence

o' A\ 0*=0 and thus o%=h% o/, h% =h,, where h: (X, Y)—
- eah"[‘l,X"Yf for X=e,X!, Y=e¢;Y/ is the second fundamental form. The
next differential prolongation gives Vh"‘.‘l_ =h‘fl.kmk, h"‘.‘ik=h°‘.‘kj_- where
§h‘;‘i :=dh‘;‘l,——h°;im’§——h"‘,‘k m'; +hf‘?j w* are the components of Vh, and

B
further

Vhe, A o*=—h3, Q—he, Q* +h8, Q=,
where

. . )
Qi i=do] — ot \ o), =—§Rli‘k, o* A\ o,

1
A gl SR k !
Qﬁ.——dmg‘ oﬁ;/\my 2Ra,k,m A\ ©



are the curvature 2-forms of V and V!, respectively. Here Q/ =
=%\ ol , Q8 =0! A of, thus

ik il

R|, = 3 (h% h% — h2 h%, ),
o

R

a,kl

™ z (A%, bl — B3 hE)5
these are the components of the curvature tensors R and R' of V and
VL, respectively. The identity between two expressions of QF gives by

exterior differentiation eR‘;'k, N o* A ©'=0, where

— RSP

ykl

VRE . =dR®, +R —RP wp —REwp (1)

akl apl akp

are the components of VRL. Since V works as a differential operator,

it is obvious that VA=0 yields VR+=0 (see Section 1.3.). By exterior
differentiation these systems yield their integrability conditions, res-
pectively, R-h=0 and R°R'=0, where the leit sides are component
wise correspondingly

h:i Q* +h3, Q’; — h‘j'l_ Qf; =)
and

RE /58 TR SR FRE TR, S, (2)

V,ij u o,ijf

Due to the expression of RP  ~the first yields the second, ie. every
semiparallel submanifold M™ in E* satisfies R R+=0.

2.2. The case of a surface; the canonical frame field. Let further m==2.
The derivation formulae are now

dx=weiw', de;=e;0) +h;w’,
where hij=eqh% and i, j etc. run {1, 2}. Aiter the transformation
e =e, cosqteysing, e, =—e, singp-e;cosy,
one has
o'=o' cosp—w? sing, o*=o'sing+w? cosg
and thus
K, =hu cos? 9+2h,; sin @ cos g+ kg, sin® g,
b, = (haa — hy1)sin @ cos ¢+hya(cos? g — sin®g),
Ky, =hiy sin? ¢ — 2hy5 sin @ cos @+ hap cos? g. -

Hence the vectors
1
=— (h1y— h9o), B=hys, H=§ (hi+hae)

transform according to the formulae
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A’=A cos 29+ B sin2¢, B’'=-—Asin2¢+Bcos2p, H =H,
which show that H is an invariant vector (the mean curvature vector)
and the span{A, B} is an invariant 2-dimensional subspace of TiM2,
The normal curvature ellipse (see Section 1.4.) of M2 at x lies on
a 2-plane trough w with xw=H and with the 2-direction span{A, B},
provided that A} B; here w is the centre of this ellipse. To see it one must

take X=e cosa+e;sina and calculate A(X, X); the vectors A and B
are the conjugate radius vectors of two points of this ellipse.

A simple calculation shows that

A, B’)=% (B2 — A?)sin 49+<A, B)cos 4g,

1
5(3’2 —A”?) =% (B? — A?)cos 49+-(A, B)sin 4q.

Hence the pair of conditions (A, BY=B? — A?=0 is invariant and char-
acterizes the case when the normal curvature ellipse is a circle.

Otherwise there exists a ¢o so that ¢(4’, B’)=0 and thus A’ and B’
are in principal directions of the ellipse. Let this transformation be
done already so that in the following let (A, B)=0. Note that by

(p=—j—- the roles of A and B can be interchanged.

In general A B, A5.B? on an open part of M2 At every point x of
this part the frame can be partly canonized in TIM?, so that A=aes,

B=be;, H=uaes;+pes+vyes, a>b>0. Then
o}=(a+a)o!, o= (a—a)o?
oy =po'+be? of=>bo'+po?

2

o =yo!, 0% =y0?, (3)

»N

o? =l =0; g, o etc. run {6, ..., n}. (4)

The curvature 2-forms of this part are
—Ql =Q2 = (a’+b>— H) 0! A 0?, —Q =Qf =—2abo' A\ 0%
all other Q/, QF are zero.

In an exceptional case, when A } B, A>= B2, and so a=b>>0, the normal
curvature ellipse is a circle and the frame cannot be canonized in this
way, but the above equations still hold.

Another exceptional case, when A || B and thus B=0, leads to b=0.
Then the normal curvature ellipse degenerates, in general if A0, into
a segment and es, es become free. If H#A, the frame can be partly
canonized further, so that y==0; if H| A0 and thus =0, the frame
vectors in TiM, except e;, remain free. The particular case, when
A=B=0, leads to a=b=0, the ellipse degenerates into a point, and
if H#0 by H=uaes, it can be made fp=y=0; if here H=0, then a=b=
a=p=y=0.

These considerations show that the above equations hold for a
surface M? in E" in all possible cases.

Now it is easy to prove the assertion in Remark 1. One has to take
(2) by all values of indices a, B, i, j, to make the substitutions from
the expressions of Q/ and QF to control that the results are identities.
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3. PROOF OF THEOREM A

Let a _surface M? in E™ have the parallel normal curvature tensor
R‘, ie. VR+=0 or, componentwise, VRE .. =0. Since all Rg”.]. are
zero, except maybe

RS 1 =_Ri.12 =—2ab,

this condition due to (1) yields
d(ab) =0, ab‘mg=abw§=0; L' etesrun {6, ..5, )

Thus either
(i) b=0, or
(i) ab=k=const.>0, of=0f=0.

Conversely, (i) or (ii) yields VRL==0.

If (i) holds on an open part, then V< is flat on this part.

Let the conditions of (ii) hold on some open part. Then after exterior
differentation Egs. (3) give dy A o'=dy A ©? thus y==const., but
Egs. (4) give in the same way yo' A\ 0? =yo® A of =0.

Let y=0 on an open part. Then of =w%=0 and this part lies in
a E4 e En..

Let y50 on some open part. Then 0% =0, hence this part lies in a
E’c E®. On the other hand, for z=x-+vyles it follows that dz=
=dx-+y~'(—ydx) =0. Thus the point z with this radius vector in E®
is fixed and the considered part lies in a sphere S*(r) around this point

with the radius r=vy~!. The condition ab=const. of (ii) means geo-
metrically that the normal curvature ellipses have a constant area.

Conversely, for a surface in E* or S*(r), whose normal curvature
ellipses have the same constant area, conditions (ii) are satisfied, thus
RL is parallel. O

4. PROOF OF THEOREM B

Let a surface M? of Theorem A be minimal, i.e. H=0.

If (i) holds on an open part, then one can make y=0 on this
part and minimality means that a=p=0. Thus o =a0', o%=—a0’
0% =09 =0, where ¢, ¢ etc. run {4, ..., n}. After exterior dif-
ferentiation one obtains

da A\ 0'+2a0} A\ 0*=0, —2a0%A o'+da A 0?=0,
ao' A\ ©? =0, —aw?’A o} =),

If a=0 on an open part, this part is an open domain of a plane E* < E™.
Otherwise on the open part with a£0 one has ®? =0 and this part is
a minimal surface in a E® < E™.

In the case (ii) let M?> be minimal in a S*(r)< E5 = E". Then
a=pf=0 and

0} =ao', 0} =—a0? o4 =% 0?, o} =—ol,
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co51 =vyol, m5 =yo? (y=const.), 0? =of =0,

P = p:‘
ol =t 0;

the case of minimal M? of (ii) in a E* is included here with y==0. The
equations of the first row yield after exterior differentiation

da/\m‘+(2a(02———k—u) )/\m

(2am2 ——k—m‘s)/\ o'+4-da \ 0?=0,

ad

da A\ o' — (Qam2 —— ot )/\ 0*=0,

3
( 2a0? —aT(o"3 ) N\ o'4da A\ o*=

the other equations give identities. Thus
[0t —(G+F)Aet] w0 [aa0i—(S+5 )0t ] A w0
400} — —a—-}-—k— Aoy | A\ o?*=0, |4aw?— 7-}——k— N o | A\ o'=0.

So
4ka’0? = (k*+-a) 0} .

This, by exterior differentiation, gives

da N\ (2aw ——% ot ) [y2a~—— (k%+a*) ](u‘ N 0%

where, recall, y and & are some constants.
On the other hand, the exterior equations above yield due to Cartan
lemma

92
da-—:a,u)‘—{—azm*,
3
a
2002 — o o

% 3=——a2w1+a1m'~’,

hence
@ a2 3 (K+at) =yiat
If y=0, this is a contradiction with >0, thus in E* such a M?
does not exist.

In S*(r), r==vy~" there must be

Y — 2 (k+4at) 0.

3( k2
Here in the case “=" one has y2=§(—+a2) a,=a,=0, thus
3
2am21———:—m;=0. But on the other hand, from the two first exterior
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. k o k
equations above 2am2l—zmg——-0, hence S e 0f=0. If o}=0
on an open part, the exterior differentiation gives a contradiction
2ko' \ ©*=0. So it must be a’=k, thus 20?=0}, y=a}3. Tllese
relations characterize the Veronese surface V(F)c S*(r), F=r})3=

=a-'=Vk.
It remains to show that the case of “>" leads to a contradiction. This
is the case of a"; +a3 >0 or, equivalently, aconst.

2
Denoting [yzaz—g(k2+a4)] =h(a), one has

a;=h(a)cosa, as=~h(a)sin a.
3

a
If to substitute this into the expressions of da and 2am"l’——E—m‘;=
|

—— (k*—a')o; and then to differentiate exteriorily, the results are

(da+w?) A\ (—o' sina+o? cos a) =0,

2 4
[hz k +3a +(k2—a‘)]m‘ A 02=
—h(a) [—‘%‘1")— o' A @ — (da+o? ) A (o' cos at-o? sina) ]
and yield
da+e? =p(a) (—o'sin ato’cos a),
where
SR [ " k*+3a* "R ]_ dh(a)
p(a)_ ah(a) h( ) kg__a4 +(k a‘) da
Now the exterior differentiation gives
k* _ dp(a)
AL T Ralad e A S5

but this is not an identity and thus is a contradiction to as%=const. O
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PARALLEELSE NORMAALKOVERUSE TENSORIGA PINNAD
Ulo LUMISTE

On toestatud, et kui pind M? eukleidilises ruumis E” rahuldab tin-

gimust VRL=0, kus R' on normaalkdveruse tensor ja V on van der
Waerdeni — Bortolotti seostus, siis kas (i) R+=0 voi (ii) pinna M? nor-
maalkoveruse ellipsid on konstantse pindalaga ning M?c E*c E* voi
M2 < S*(r) c ESc En. On leitud koik minimaalpinnad selliste pindade
seas. Klassikalistele minimaalpindadele M? < E®c E" lisanduvad vaid
Veronese pinnad V2(F)c< S*(r)< ES < E* (kui sfddri S*(r) minimaal-

pinnad; F=rY3).

NMOBEPXHOCTH C NMAPAJIJIEJIbHBIM TEH30POM HOPMAJIbHOH
KPUBHU3HbI

0an0 JIYMUCTE

Jloka3zaHo, 4To ecsu moBepXHOCTh M? B eBKJIHAOBOM mNpOCTpaHcTBe E”
yaoBjeTBopsieT yciaoBHio VRL=0, rze Rl ecTb TeH30p HOPMaJbHOH KpH-

BH3HBl H V ecTb CBA3HOCTb BaH Jep Bapaena—DBoprosaortH, 1O 2160
(i)R+=0, aubo (ii)M? ob6aamaer >JJHUNCAMH HOPMAJbHOH KPHBH3HBI
MOCTOSIHHOM TIIOLIAAM M JeXHT Win B E*c E", uau B S*(r) c ESc En.
Halinens Bce MuHHMagdbHbie M? cpenu Takux mnosepxHocTell. K kuaccu-
YeCKMM MHHHMaJbHBIM TOBepXHOCTAM M2 E3cCE"” npubaBasioTcsl JHLIb
nosepxuoctu Bepouese V?(F)=S*(r)cE®cE" (mocieiHHe Kak MHHHMAaJb-

uoie B S(r); F=ry3).

419



	b10720984-1995-4 no. 4 01.12.1995
	Chapter
	FÜÜSIKA MATEMAATIKA
	PHYSICS MATHEMATICS
	ФИЗИКА МАТЕМАТИКА


	SURFACES WITH A PARALLEL NORMAL CURVATURE TENSOR
	PARALLEELSE NORMAALKÕVERUSE TENSORIGA PINNAD
	ПОВЕРХНОСТИ С ПАРАЛЛЕЛЬНЫМ ТЕНЗОРОМ НОРМАЛЬНОЙ КРИВИЗНЫ
	THE METHOD OF FINITE DIFFERENCES IN SOLVING AN INVERSE PROBLEM FOR OSCILLATION OF NONLINEAR VISCOELASTIC ROD
	Untitled
	DIFERENTSMEETOD MITTELINEAARSE VISKOELASTSE VARDA VONKUMISEGA SEOTUD POORDULESANDE LAHENDAMISEL
	МЕТОД КОНЕЧНЫХ РАЗНОСТЕЙ, ИСПОЛЬЗУЕМЫЙ ДЛЯ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ, СВЯЗАННОЙ С КОЛЕБАНИЯМИ НЕЛИНЕЙНОГО ВЯЗКОУПРУГОГО СТЕРЖНЯ

	GEODESIC MULTIPLICATION AND GEOMETRICAL BRST-LIKE OPERATORS
	Untitled
	Fig. 1. Right translation as an infinitesimal shift of a geodesic line x(f) in the direction of y. Fig. 2. Left translation as an infinitesimal shift of a point y in the direction that is ах (е) parallel to the {апреп{ vector Т
	GEODEETILINE KORRUTAMINE JA GEOMEETRILISED BRST-SARNASED OPERAATORID
	ГЕОДЕЗИЧЕСКОЕ ПРОИЗВЕДЕНИЕ И ГЕОМЕТРИЧЕСКИЕ БРСТ-ПОДОБНЫЕ ОПЕРАТОРЫ

	ОN ТНЕ N=l LINEARIZED SUPERGRAVITY
	LINEARISEERITUD N=l SUPERGRAVITATSIOONIST
	O ЛИНЕАРИЗОВАННОЙ N=l СУПЕРГРАВИТАЦИИ

	ECCENTRIC INTERACTING ELECTRON
	EKSTSENTRILINE KIIRGAV ELEKTRON
	ЭКСЦЕНТРИЧЕСКИЙ ИЗЛУЧАЮЩИЙ ЭЛЕКТРОН

	CYCLOTRON FREQUENCY TECHNIQUE OF THE MEASUREMENT OF BETA DECAY SPECTRA
	Principal sketch of the cyclotron frequency spectrometer.
	BEETA-LAGUNEMISE SPEKTRITE MÕÕTMISE TSÜKLOTRONSAGEDUSE MEETOD
	МЕТОД ЦИКЛОТРОННОЙ ЧАСТОТЫ ДЛЯ ИЗМЕРЕНИЯ СПЕКТРОВ БЕТА-РАСПАДА
	LÜHITEATEID
	SHORT COMMUNICATIONS
	КРАТКИЕ СООБЩЕНИЯ



	A HAWKING PROCESS IN SOLIDS: RELAXATION OF A STRONGLY EXCITED MODE
	Fig. 1. Two-phonon relaxation of a strongly excited mode caused by anharmonic interaction with acoustic phonons; #==l, wa= 1, ©:l== 1.5, шо==o; ша == 0.5.
	Fig. 2. Two-phonon relaxation of a strongly excited mode caused by anharmonic interaction with acoustic and optical phonons; fi=l, @а==l, @; == 1.7, Фо:== 1.2, Фоз== 1.5, ©а ==o.3, ©о=o.s.

	CHEMICAL REACTION IN A STRONG COHERENT LIGHT FIELD
	EESTI TEADUSTE AKADEEMIAS
	EESTI TEADUSTE AKADEEMIA 1995. AASTA AASTAKOOSOLEK
	TEADUSTE AKADEEMIA JA TEMA INSTITUUTIDE ÜLESANNETEST NING KOHAST EESTI TEADUSKORRALDUSES
	MÕNINGAID KOMMENTAARE EESTI TEADUSTE AKADEEMIA TEGEVUSE KOHTA 1994. AASTAL
	Untitled
	EESTI TEADUSTE AKADEEMIA ÜLDKOGU 1995. aasta 19. aprilli OTSUS Eesti Teaduste Akadeemia ja tema instituutide ülesannetest ning kohast Eesti teaduskorralduses

	EESTI TEADUSTE AKADEEMIA ÜLDKOGU KOOSOLEK 25. juunil 1995
	KROONIKAT CHRONICLE
	Contribution
	Untitled

	Contribution
	Contribution
	Untitled

	Contribution
	Contribution
	Untitled

	Contribution
	List




	Statement section
	AASTASISUKORD
	CONTENTS OF VOLUME 44
	ГОДОВОЕ СОДЕРЖАНИЕ

	Illustrations
	Untitled
	Fig. 1. Right translation as an infinitesimal shift of a geodesic line x(f) in the direction of y. Fig. 2. Left translation as an infinitesimal shift of a point y in the direction that is ах (е) parallel to the {апреп{ vector Т
	Principal sketch of the cyclotron frequency spectrometer.
	Fig. 1. Two-phonon relaxation of a strongly excited mode caused by anharmonic interaction with acoustic phonons; #==l, wa= 1, ©:l== 1.5, шо==o; ша == 0.5.
	Fig. 2. Two-phonon relaxation of a strongly excited mode caused by anharmonic interaction with acoustic and optical phonons; fi=l, @а==l, @; == 1.7, Фо:== 1.2, Фоз== 1.5, ©а ==o.3, ©о=o.s.
	Untitled
	Untitled
	Untitled

	Tables
	Untitled
	Untitled




