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For the development and validation of numerical models describing the
collision of spherical solid particles with a rough wall, detailed

experiments were performed in a particle-laden horizontal channel flow. In

order to assert the influence of wall roughness the roughness structure of

the channel walls was analyzed, using a pethometer. The wall collision

process was studied, using a pulsed laser-light sheet in connection with

digital image processing. The statistical properties of the particle-wall
collision (i.e. probability density functions of the change оЁ particle
velocity and trajectory angle) were obtained by analyzing the particle
traces before and after the rebound from the wall [l].

The influence of correlation between particle size and roughness
structure was analyzed, using different wall materials and particles of

different size.

Furthermore, numerical simulations were performed, using the particle-
wall collision model introduced by Sommerfeld [2], where the local

collision angle was assumed to be composed of the particle trajectory
angle and a stochastic contribution due to the wall roughness. By using a
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Gaussian distribution function with an appropriately selected standard
deviation for the roughness angle, it could be demonstrated that this model

closely simulates the experimental observations.
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