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Abstract. The inviscid interaction of two identical vortex rings is studied numerically. At the

initial moment, the two rings are inclined symmetrically to the horizontal plane for an angle /3,
and they are located sufficiently far apart, so that the effect of their initial mutual influence was

reduced at a minimum. Particles are marked uniformly along the central vortex lines ofrings
and their motion is describedaccording to the Lagrangian approach. Velocitiesofparticles are

calculated by using the modified Biot-Savart law. A five-point filtration procedure is used to

prevent a calculation instability. When particles belonging to different filaments overlapped,
the topology of filaments was redefined to continue the simulation. Positions of particles
were calculated at each moment of their motion, which displayed the evolution of the vortex

contours with time. A correlation between the initial angle /3 and the collision angle 6 was

found. For example, when the initial distance between vortex rings was equal to 4 of their

radii, the smallest obtained value for the collision angle was 43°, and it corresponded to the

zero value of the initial angle. Even in the case of such a small initial angle two vortex rings
would join into a single filament, and after some time this resulting filament would split back

into two other vortexrings.
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1. INTRODUCTION

It was experimentally observed [} ~*] and numerically confirmed [*>~7]
that two vortex rings approaching one another along intersecting paths
joined, at first, into a single vortex filament, that split back into two other

rings after its certain evolution. |
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However, the secondary splitting did not always occur. The existence

of a critical approach angle below which such a splitting has not been

observed, was pointed out by Fohl and Turner [*]. On the other hand, a more

recent experiment [%] gavea good example of the secondary splitting of the

filament formed out of the rings of a smaller value of the approach angle
than that of a critical one. A similar contradictory situation takes place in

numerical simulations. While some calculations confirmed the conclusion

by Fohl and Turner[°], others had no problems with small approach angles,
but for angles more than 45°, the secondary splitting was not observed

[6]. Moreover, simulations of the same experimental situation by means

of different methods of calculation led to distinct results in respect to the

secondary splitting ["'B]. In addition, difficulties in the interpretation of

numerical results are connected with the choice of the initial position of

vortex rings, which can be arbitrary in simulations, but not in observations.

The main goal of this paper is to elucidate the influence ofvalues of the

initial angle and initial distance between vortex rings in their ability to join
or split again. The numerical method is described in the next section of the

paper. In the third section, results of various simulations are discussed, and

possible explanation for the causes of incompatibility in previous papers
are given in the conclusions.

2. NUMERICAL METHOD

Let @(Z,t) be the velocity field and &(Z,t) = V x @ be the vorticity
field. The three-dimensional vorticity transport equation in an incompress-
ible flow is the following [°]

%+(ü.v)a,*=(ä-V)ü+ „У, (1)

where v is the kinematic viscosity, ¢ is time. Taking into account the

continuity equation

V-ü=o, (2)

and the definition of vorticity

WE,t) =V x ¥, (3)

we obtain that velocity and vorticity fields are connected by the equation

Vii=-Vxa. (4)
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The last equation has a solution in the form of the Biot—Savart law [°]

4

1 [(Z-7") x 007')dz'

It is well known from the theorems of Helmholtz and Kelvin that tubes of

vorticity retain their identity, and move as material entities with constant

circulation for a uniform-density inviscid fluid. Accordingly, we define

the inviscid flow as the motion of the system of thin vortex elements with

fixed circulation. For a single space curve C, the vorticity field has the

representation in the thin-filament approximation [!°]

A 1 (6)J(T) = Г/Сб[:Ё — r(s)]äds ;

where 7(s) is the space curve of the filament parameterized by the arc

length s, and I is the filament circulation. The velocity field induced by
this filament in an unbounded domain is given by [l°]

нГ [Z — 7(s)] x g—fds
Ü(T) = 477/(„*—————|s—7—'l3 : (7)

This expression is a good approximation for the velocity field as long
as the field point Z does not approach any part of the curve. As approaches
() on the space curve, u diverges as 1/|Z — 7(s)|. The finiteness of the

vortex core must be taken into account to avoid this singularity.
Several methods have been developed to treat the finite core effects in

the Biot-Savart law [1?-11]. We use the Rosenhead-Moore approximation,
which leads to the following evolution equations for the sequence of N

vortex elements with associated space curves 7;(s) [l°]

dr; T [Fi(s,t)=75(s',1)] xSZAS,
||

eTI (il e L 5

where o is a characteristic core radius and « is a constant. The core

sizes o; may depend on time, and vary along the filament. The condition

of conservation for the total volume of vorticity is used to model their

variations A

L 0 =O, (9)

where L; is the instantaneous length of filament :. For any vortex element,

its velocity vector (8) is induced both by its own vortex ring and by another

one. | . I
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The forth order Runge-Kutta time integration scheme was used for

numerical simulations. In addition, a five-point filtration procedure was

applied by reconstruction of space curves

AA
—Fn—z + 4Fn—l + lOFn + 4Fn+l — 7_:п+2

(10)га —

16

to avoid calculation instabilities.

At an initial moment, two identical vortex rings with an initial radius

Ry were placed at a distance D, along a certain axis, say y axis, and

inclined for an initial angle 8, 0 < 8 < 7/2, to the horizontal plane zy.

Vortex contours were parameterized by the relations

21 =Ro СОS š,

ylz%o—+Rosinšcosß, (11)

21 =Rosinfl+Rosin?R—€sinfl,
0

25

:c2=Rocos—R—o—,
D

‚

25

y2=-——2-0-+RosmEO-cosfl, (12)

‚

25.
zngosinfl—Rost—osmfl.

Introducing dimensionless variables

r {Г
ка ор 13"

® R
(13)

we obtain only two governing parameters in the formulated problem,
namely the initial angle / and the initial relative distance between the

rings Dy /Ry. Elucidating the influence of their variation on the interaction

process of vortex rings is just the aim of the paper.
Initial values of o;/Ry were taken as 0.1. The value of parameter

a was chosen equalling to 0.22, which corresponds to a uniform vorticity
distribution in the vortex core ['?]. Discretization step L; was equal to 20%

of the initial radii.
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3. NUMERICAL RESULTS

Calculations were proceeded in two stages. At first, the motion of

vortex rings before theircollision was simulated. The change in the topol-
ogy of the vorticity lines in a reconnection process was modelled by an

intervention procedure, i.e. excluding overlapped elements of the vortex

rings and connecting their retained parts. The motion of a single vortex

filament was calculated after reconnection.

Calculations were made for several initial inclinations of rings to the

horizontal plane and relative distances between rings. A typical example of

the results is represented in Fig.l. It corresponds to the value of the initial

angle 8 = 30° and to the initial relative distance Dy/Ro = 2. All the

basic states of the evolution of vortex contours can be seen in this Figure.
At first, two vortex rings driven by induction, approach each other. At a

certain moment (t* = 0.35 in this case), the rings touch one another and

join by the reconnection of the vortex lines. After that, a single vortex

filament begins to evolve due to its self-induction. Such an evolution is

finished with the second reconnection (at t* = 0.95 in this case). A clear

pyramidal structure before the second reconnection is observed. There is a

satisfactory agreement between numerically calculated and experimentally
observed [?] forms of vortex contours.

Numerical experiments confirm the absence of the second reconnec-

tion for sufficiently small values of colliding angle 6. At the same time,

they show that the value of colliding angle depends on both the initial angle
3 and the initial distance D/Ry. In fact, vortexrings change their angular
position in respect to each other due to the induction. As an example,
the relationship between the initial and colliding angles in the case, when

Dy /Ry = 4 is represented in Fig.2. It is seen that in this case the value

of the colliding angle 6 = 43° corresponds to the zero initial angle, which

means that the second reconnection will take place even for such a small

value of the initial angle between the paths of vortex rings when they are

placed sufficiently far from each other. The difference between initial and

colliding angles decreases with the increase of the initial angle for the fixed

initial distance.
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Fig.l. Basic stages of vortex rings interaction.
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4. CONCLUSION

The dependence of a colliding angle on the initial distance allows to

give an explanation for the contradictions in previous investigations. In fact,
if the initial distance is small, the difference between initial and colliding
angles is also small. Consequently, the second reconnection is simply not

possible in this case. At the same time, the second reconnection will take

place for the same value of the initial angle, if, however, the initial distance

between rings will be sufficiently large, because the colliding angle will

then be also large.
Thus, the initial distance between vortex rings is a significant param-

eter determining essential features of their interaction process, such as the

presence or absence of second reconnection. Moreover, the case of a very
small initial distance used in numerical experiments ['?] is unrealistic, be-

cause vortex rings cannot be formed suddenly at an arbitrary space. If the

real initial distance were taken into account in [*3], the result could have

been different.

Fig.2. Colliding angle € as a function of initial angle /3 in the case Dg/Rg = 4.
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KEERISRÕNGASTE KOOSTOIMEPROTSESSIDE

NUMBRILINE MODELLEERIMINE VEDELATE

OSAKESTE DÜNAAMIKA ABIL

Arkadi BEREZOVSKI, Feliks KAPLANSKI

Kasutades Lagrange’i meetodit keerisrongaste liikkumise kirjeldami-
seks ja modifitseeritud Biot’-Savart’i seadust mirgistatud osakeste kiiruse

mddramiseks on vilja selgitatud kahe identse horisontaaltasandi suhtes

stiimmeetriliselt kallutatud keerisrongaste koostoime mehhanism ning lei-

tud seaduspirasus keerisronga kaldenurkade vahel algasendis ja rongaste
kokkupuutel.
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МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ ВИХРЕВЫХ КОЛЕЦ
С ПОМОЩЬЮ ДИНАМИКИ ЖИДКИХ ЧАСТИЦ

Аркадий БЕРЕЗОВСКИЙ, Феликс КАПЛАНСКИЙ

Численно исследовано невязкое взаимодействие двух оди-

наковых вихревых колец, симметрично наклоненных к плоскости.

Использовался подход Лагранжа и модифицированный закон Био-

Савара. Определена зависимость между начальным углом наклона В
и углом @, образующимся при соприкосновении вихревых колец, в

зависимости от начального расстояния. Показано, что даже при

нулевом начальном угле (кольца лежат в одной плоскости) и

достаточно большом начальном расстоянии между ними возможно

разделение образующегося в результате их взаимодействия одного

вихревого контура на два новых вихревых кольца.
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