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Abstract. Particle flow patterns over a body with variable surface temperature are studied by an

example of a supersonic uniform dusty gas flow around a sphere. The particle concentration is

accepted to be negligibly small. The mathematical formulation of the particle motion includes the

description of the gas-flow field in the shock layer, taking into account the boundary layer on a

sphere and considering additional components to the usual drag force in the interphase interaction

inside boundary layer, namely the lift Saffman force, the thermophoretic force and the "wall effect”

force. The analysis of fine particle flow patterns inside boundary layer near the stagnation point is

carried out in the case of a "hot" surface. It was found that the boundary layer influenced weakly the

global particle flow field.
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1. INTRODUCTION

- In two-phase gas-particle aerodynamics one of the most interesting
problems is the influence of the wall temperature on the particle motion
and mass transfer. This problem is important in many applications: in heat-

exchange apparatus with a gas-particle mixture as a heat-transfer medium,
in powder spraying by jets, etc.

The majority of investigators do not take into account the boundary-
layer effects in the problems of dusty gas flows over bodies and obstacles.

But for fine particles the boundary layer can play an important role in

shaping particle trajectories near the wall and hence forming the particle-
phase flux to a body surface (see for example [) Among mentioned

effects the influence of the surface temperature on the motion and

deposition of particles is of great interest for practical purposes. The aim

of the present investigation is to make a detailed study of fine particle flow

patterns over a blunt body particularly inside a boundary layer. A mass

concentration of particles is presupposed to be low enough, so their

influence on the carrier gas flow and particle-particle collisions. are
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negligible. Estimates for a particle concentration in the undisturbed flow
when both mentioned assumptions are valid have been obtained in [2]. It
should be noted that when a particle concentration in the undisturbed flow
increases, particle-particle collisions become essential before particles
begin to affect considerably the carrier gas flow. So, taking into account

the inverse influence of the particle phase on the gas-phase flow without
simultaneous consideration of particle-particle collisions is physically
incorrect.

When the effect of particles on a gas flow is negligibly small the

problem of the particle motion over a body is simplified considerably. In
the present investigation carrier gas in the flow over a sphere is assumed to

be viscous. A practically important case of high Reynolds numbers is

considered. The constructing of a gas-flow field in this case is considered

in Section 2.1.

The two-phase boundary-layer structure has been studied by many
authors (see for example [3'6])‚ but the present physical and mathematical

setting of the problem differs from previous ones. The distinction refers to

the simulation of the force acting on a particle inside boundary layer.
Conditions of gas flow over a particle inside a boundary layer greatly
differs from the ones in the region far from the body surface where gas
flow is practically inviscid. In the inviscid flow the usual drag force is the

dominant one and other components are negligible. Inside a boundary
layer in addition to a drag force other components of the interphase force
must be taken into account. This question is discussed in detail in Section
2.2,

In Section 3, numerical results characterizing the particle flow fields in

the boundary layer near the stagnation point and in the whole shock layer
of a sphere are presented.

2. MATHEMATICAL MODELLING

Let us consider a supersonic uniform dusty gas flow with the velocity
V_ over a sphere of radius a. The following assumptions for the analysis
are used:

(1) the gas is viscous both in the flow over а sphere and in its interaction

with the particles;
(i) the gas is a continuum perfect gas with constant specific heats;
(iil) particles are solid spheres with a constant material density;
(iv) the mass concentration of particles is low and the effect of particles

on the gas flow is neglected;
(v) the Brownian motion of particles is neglected;
(vi) particles do not interact with each other;
(vii) no phase change takes place.
Owing to the assumption (iv), the particle motion can be studied by

sequential solving of two separate problems (1): the determination of the

carrier gas-flow field and (2): the calculation of the particle trajectories in

the gas-flow field.
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2.1. Modelling of the gas flow

We consider the case when the Reynolds number Re (Re_ =

p_ V._a/pn_, where p_ and U, are the density and the viscosity of the

gas in the undisturbed flow, respectively) is high enough so that the shock

layer can be divided into two areas: the outer area where gas viscosity and
thermal conductivity in the flow over a sphere are of no importance, and
the thin boundary layer.

In the outer area we use the tabulated numerical solution for inviscid

flow [7] when the vicinity of the stagnation streamline is considered.

For the analysis of the flow in the whole shock l%yer we solve the Euler

equations by using the TVD scheme developed in [°].
For solving of the laminar compressible boundary layer equations near

the stagnation point we use semi-self-similar variables [?] without using
the classic Lees—Dorodnitsyn transformation which is inconvenient for the

description of the carrier gas flow in the physical space. The continuous

gas-flow field near the stagnation streamline in a shock layer is

constructed by tailoring together inviscid and boundary layer profiles of u,

v, p and T(u, v are the velocity components in curvilinear boundary-layer
coordinates (xy), p and T are the density and the temperature of the gas,

respectively).
When we study the flow in the whole shock layer, we solve the

boundary layer equations by using a cubic-spline-finite-difference scheme.

For constructing the continuous flow field in this case we use the

composed technique of asymptotic expansions %
It is obvious that the boundary layer flow depends on the temperature

factor 7,,/T (T,, and Ty are the body surface temperature and the adiabatic

stagnation temperature in the critical streamline, respectively). The

difference between gas-flow fields in the boundary layer for the different
values of 7,,/T leads to the different pictures of fine particle streamlines.

2.2. Modelling of the particle motion

Consider the question of modelling of the force the carrier gas acts with
on a single particle. We suppose that particles which impinge on the body
surface are absorbed by it.

In the present investigation fine particles with a radius less than the

critical one are of great interest, because the boundary layer on a sphere
influences considerably just their trajectories. In the inviscid area of the

shock layer the gas flow over such particles can be assumed to be nearly
uniform at a distance equal to the particle velocity relaxation length. It

allows to use the results for the particle drag force obtained in the
unbounded uniform flow. Moreover, simple estimates show [ll] that in the

dusty-gas flow where the density ratio p_/p is of the order 10-10* the

gas flow over a particle is quasi-stati%nary. Here we use the drag
coefficient Cp given by Henderson ['2]. 1t takes into account inertial,
compressibility and rarefaction effects as well as a temperature difference
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between the gas and a particle. For fine particles a temperature difference
is neglected. The Henderson formulae are very cumbersome and not

presented here, but they are in good agreement with the experimental data
over the wide range of the Mach number M

»
and the Reynolds number Re,,

defined as

M,= |V- Vp[/c, Re, = zrpp|i7-x7p|/„.
Here ‘V— V | is the particle velocity relative to the gas, ¢ the sound

velocity, Yp [Ёе particle radius. In the limit when Mp —> ( апа Rep << 1, the

Henderson formulae reduce to е Stokes—Oseen drag law.

Inside the boundary layer on a body surface the action of the carrier gas

on a particle has a few specific features. Let us consider them in detail.

Due to the shear flow in the boundary layer the lift force and the

particle rotation appear. Saffman received the formula for the lift force,
acting on a freely rotational particle in the uniform slow shear flow 3.
We use it in the form

"

5 рди 1/2

д = 6.46цгр(и-—ир) (a) . (1)

This formula is valid when the particle Reynolds number Re,, and the

shear parameter @ satisfy the inequalities

Rep<<(aeßep)V2<<l, ® = (u/dy)r /u.
It should be noted that although the Saffman's result requires the

particle Reynolds number to be very small it cannot be received from the

Stokes equations for a creeping flow.

The second addition to the usual drag force that can be significant
inside a boundary layer near the surface is connected with the so-called

"wall effect”" due to the hydrodynamic interaction between a particle and a

wall. In the vicinity of the wall the particle drag force is considerably
greater than the one given by the Stokes law. This problem has been

analyzed for a Stokesean particle by many investi‘gators. We use the

approximate astptotic solution from the paper ['4] and the result of

Goldman et al.[ s].
Due to the linearity of the Stokes equations and boundary conditions we

may obtain the solution for the arbitrary motion of a spherical particle in

the Couette flow near a rigid wall by superposing of the cited results. In

this case due to the "wall effect" x- and y-components of the additional
force take the form

r r

f, = %—”[Hfš—”]/„, (2)

ур ур

RS- 9’,
f =—-—[l+—— | 3)

y HyByp Bур
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where y,, is the distance from the wall to the particle centre, and Jux and Л,
are the x- and y-components of the usual Stokes drag force which can be

written in the form

f 5 9 (u-u)), (4)

л, = ФО-»,), (5)

1
ф = -2-CDltrl2)p((u—up)2+ (v—vp) 2) 1/2. (6)

Up to the terms written out in (2) and (3) the "wall effect" force is

independent of the angular velocity of a particle. On the contrary, terms of

the higher order depend on the particle angular velocity and also on the
curvature of a u-velocity profile in the boundary layer. Hence the further

refinement of the expressions (2) and (3) is of no importance if we want to

describe the dusty-laden boundary-layer flow on a curved shape body.
The last addition to the usual drag force considered in the present study

is the thermophoretic force. The literature on thermophoresis is rather

extensive but, as it has been mentioned in [l6], there is a number of

conflicting results both theoretical and experimental. The cited paper

contains a critical review of the problem as well as arguments in support of

the theory of Brock ['7] with ап improved value for the thermal slip
coefficient. The modified Brock's formula for the thermophoretic force

agrees within 20% or less with the majority of the available data over the

entire range of the particle Knudsen number 0 < Kn), < » ['°] (Kn, =Иг
I = 2u/pc is the mean free path of molecules in gas with

c= (BBRT/T)
172

the mean molecular speed and R the specific gas

constant). This formula is used in the present study. It takes the form

2

-
-l2xp'r, С, (МА +Сг тоо

t pT (143C,1/r) (I+2X/X,+2C//r)) dy

in which the constants have the values C; = 1.17, C, = 2.18, C,,, = 1.14.

Here A and Äp are the thermal conductivities of the gas and particle,
respectively.

From the above discussion the Newton's eguation in (xy) coordinates
for the particle motion inside a boundary layer may be written in the

following form

dup upvp
"atary)Mt ®

dvp uš
” _‹}7+_а_+)—›; =fu)’+fwy+fs+ft’ )
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4
Here m = šppnrž is the mass of a particle. Componentsf,,, fiyys andfi
must be omitted outside the boundary layer.

Adding to (1)—(9) the kinematic relations

dxp aup
— = —, (10)
dt a+yp

dy
P

— =V, 11
dt Y» (11)

we receive a closed set of equations which describes the particle motion.

The particle velocity in the undisturbed flow is assumed to be equal to

that of the gas and the initial conditions for the set (1)—(11) are accepted in

the following form

{= 0: У, = У,р = aarcsin(zpw/(a+ysh) ),

u =V _sin(x./a), v. ==V cos(x /a).
P e P P o9 р

Here z__ is the distance from the particle centre 10 е symmetry axis in

the undisturbed Ном, ууу the bow shock coordinate corresponding to z__.
One additional comment is necessary. The additive form of the

expression for the force acting on a particle is the well-known tradition in

simulating of two-phase gas-particles flows. But this approach is not so

obvious as it seems at first glance. It is based on a hypothesis that the total

force may be represented as a simple sum of the components caused by
different phenomena. Unfortunately this additive form is often physically
incorrect. The additive form of the force expression is valid only when the

governing equations and boundary conditions in the problem of the gas
flow over a particle are linear. Such situation is realized when the flow is

either potential or creeping. In general the carrier gas flow over a particle
is neither potential nor creeping. Because of this, the additive form of the

expression for the total force must be justified in every concrete gas-
particle flow. In the present study very small particles are considered,
because it is just they that are of great interest from the standpoint of

boundary-layer effects. One might expect the carrier gas flow over such

particles to be creeping or nearly creeping and therefore the additive form

for the total force expression to be correct. It should be pointed out that in

that case formulae (1), (2) and (3) forf;, f,,, andfwy are valid.

3. NUMERICAL RESULTS

Computational investigations have been carried out in dimensionless

variables which were obtained by dividing all linear sizes to the radius of a

sphere a, velocity components to V_, physical density of each phase to

P,» temperature to Vž/ (yc,) » viscosity to p_. The special numerical
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method has been used to solve the set of ordinary differential equations
from Section 2.2 which became stiff for very small particles. In

calculations, there have been taken the following values of parameters:

M_ = 2, Re = 107, the Prandtl number Pr = 0.75, the specific heat ratio

у = 1.4, Т = 273 К, и = 171 х 10° N - s/m?, R = 286.7 J/(kg - K),
М =2 \М/(т - К), р = 2300 kg/m3, a = 1 m. Parameters 7,/T( and r),
were variable.

?

The typical particle flow patterns for 7,,/T ? 1 are shown in Fig. 1.

Curves [-15 correspond to (z w/a) iU =02,1,2,3,4,5,6,7,
8,9, 10, 11, 12, 13, 14. The particlepsize has been changed in the vicinity
of the critical one. We see that the pattern of particle streamlines changes
very considerably when the particle radius varies from r,/a = 4.0 x 107 to

4.42 x 100, In the cases (a)—(c) there is a continuous particle-free region
near the surface. But cases (a) and (c) differ from each other qualitatively.
In the case (c¢) particle streamlines intersect one another in spite of the

equal size of the particles. When passing from the case (d) to (e), the

particle-free region in the vicinity of the stagnation gas streamline

decreases and disappears in the case (f ). In all cases except (f ), there is a

limiting line with a high concentration of particles. It can be assumed that

Fig. 1. Particle streamlines in the boundary layer near the stagnation point for particles of

different size, T,,/To = 2.0. a —f correspond to (r,/a) X 10% = 4.0, 4.21, 4.37, 4.39, 4.41,
4.42.
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in its neighbourhood the model of noninteracting particles becomes
incorrect. This question requires to be studied more closely.

Figs. 2 and 3 illustrate that the particle Knudsen number on the

trajectories in the typical cases shown in Fig. 1 a, c is less than 0.06, and
therefore particles move in a carrier gas as in the a continuum medium.

Moreover, we can conclude that gas is incompressible because of
M <O.OI and the flow over a particle is nearly creeping because of
RE <l. The last result indicates that the accepted model of the force
inté’rphase interaction inside the boundary layer is justified.

Fig. 2. Variation of the particle Knudsen number, Mach number and Reynolds number

along the particle streamlines shown in Fig. la.
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It is interesting to compare the components of the total force acting on a

particle. As indicated by Fig. 4, all the components taken into account are

important.
Fig. 5. shows particle streamlines in the whole shock layer of a sphere.

The streamlines are plotted for 7,,/T, = 0.4. But calculations carried out

for T,,/Ty = 5.0 have given practically the same pictures of streamlines. It

means that the boundary-layer effects are negligible from the standpoint of

the global particle flow pattern.

Fig. 3. Variation of the particle Knudsen number, Mach number and Reynolds number

along the particle streamlines shown in Fig. lc.
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4. CONCLUSIVE REMARKS

In this research it was assumed that particles did not interact with each

other. But in crossing particle streamlines the appearance of a limiting line

with a high particle concentration and the polydispersity of real particle
admixture can lead to the necessity to consider more complex models for a

particle phase. This question is one of the most important for the future

investigation.
This work was supported in part by the Russian Federation Foundation

for Fundamental Research (Grant N 94-01-01338) and in part by RF

Higher School State Committee (Grant N 94-4.100- 81).

Fig. 4. Comparison of y-components of the force acting on a particle inside boundary
layer. T,/To = 2, rJa=4.37 x 10°, 2,Ja = 0.002.
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PIIRIKIHI MÕJU KERA UHTMISELE DISPERSSE VOOLUSEGA

Juri TSIRKUNOYV, Natalia TARASSOVA, Aleksei VOLKOV

Kasutades arvmodelleerimist on uuritud osakeste vooluse parameetrite
sOltuvust kera pinnatemperatuurist kera uhtmisel iihtlase kiirusviljaga
tilehelikiirusega dispersse voolusega. Osakeste kontsentratsioon on viike

ja seda ei arvestata osakeste litkumise kirjeldamisel rohukihis kera

ldheduses. Arvestatud on takistusjou, Saffmani jou, termoforeesi jou ja
"seinaefekti" moju. On tidheldatud piirikihi ndrka toimet osakeste vooluse

viljale.

ВЛИЯНИЕ ПОГРАНИЧНОГО СЛОЯ НА ОБТЕКАНИЕ

ЗАТУПЛЕННОГО ТЕЛА ЗАПЫЛЕННЫМ ГАЗОВЫМ ПОТОКОМ

Юрий ЦИРКУНОВ, Наталия ТАРАСОВА, Алексей ВОЛКОВ

Исследуются характеристики потока частиц в зависимости от

температуры поверхности сферы при обтекании ее сверхзвуковым

однородным запыленным газовым потоком. Концентрация частиц

предполагается пренебрежительно малой. Движение частиц He

учитывается в ударном слое вблизи сферы. В пограничном слое

сферы наряду с силой сопротивления учитываются сила Саффмена,
сила термофореза и “эффект стенки”. Обнаружена слабая завис-

имость поля потока частиц от пограничного слоя.


	b10720984-1994-4 no. 4 01.10.1994
	EESTI TEADUSTE AKADEEMIA TOIMETISED PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНИИ
	FÜÜSIKA MATEMAATIKA PHYSICS MATHEMATICS
	ФИЗИКА МАТЕМАТИКА

	EUROMECH COLLOQUIUM 319 THEORETICAL AND EXPERIMENTAL ASPECTS OF PARTICLE-LADEN FLOWS
	Contribution
	EUROOPA MEHAANIKA ÜHINGU KOLLOKVIUM NR. 319 TEEMAL "DISPERSSETE VOOLUSTE TEOREETILISED JA EKSPERIMENTAALSED ASPEKTID"
	Chapter
	BOUNDARY CONDITIONS OF THE MASS, MOMENTUM AND ENERGY TRANSFER EQUATIONS IN A TURBULENT TWO-PHASE FLOW
	Fig. 1. The character of the particles’ distribution by transverse velocities.
	Untitled
	Fig. 2. The variation of R with К, for Favre's averaging: /- k_=o;2-k =0.5;3-k =l. Fig. 3. R values calculated by Egs. (21), (32), and (33): I-kt = ; 2—kt =0; 3—kt =0.5.
	Untitled
	Untitled
	Fig. 4. k(k,) at A =o.sand k_=-1: I – Eq. (21); 2 – Eq. (25); 3 – Eq. (32); 4 – Eq. (33) Fig. 6. The variation of S with k,: 1, 3 — approximation (18); 2, 4 — approximation (23); 1,2 -k,=l; 3,4 -k, =0.5; a — Favre's averaging; b — averaging by time (k_ = 0); c — averaging by time. Fig. 5. The coefficient in the BC for equation of mass conservation: I, 2 — Favre's averaging; 3, 4 — averaging by time; /, 3, 4 – x=os2-x=0253-k =O;4-k=-1.
	OSAKESTE MASSI, IMPULSI JA ENERGIA ULEKANDEVORRANDITE PIIRTINGIMUSED TURBULENTSES KAHEFAASILISES VOOLUSES

	PROPERTIES OF SOLID PARTICLE DISTRIBUTION IN TWO-PHASE LAMINAR BOUNDARY LAYERS OF VARIOUS SHAPES AND PARTICLE SEDIMENTATION
	Fig. 1. Aerodynamical bench: I — main channel; 2 — channel of accompanying pure air flux; 3 — a dust suck-out channel; 4 — a device for the formation of the given flow field; 5 — blower; 6 — dispersed phase dosimeter; 7 — pure air dosimeter; 8 — thermocontroller; 9 — flowmeter; 10 — pressure converter; // — He-Ne laser; /2 — sending optics; /3 — receiving optics; /4 — registering, processing and controlling system; /5 — confuser; /6 — system оЁ grates; /7 — particle screw feeder.
	Fig. 2. The flat plate and the curved surface.
	Fig. 3. The cone model
	Fig. 4. Axial velocity of gas V/V, and concentration C/C, profiles on a flat plate. õp = 32 mkm, V= 1.5 m/s.
	Fig. 5. Axial velocity of gas V/V; and concentration C/C profiles on a flat plate. V= 1.5 m/s, X = 100 mm.
	Fig. 6. Concentration C/C, profiles on a flat plate. $ = 23 mkm, Vp =l5 m/s, X 100 mm.
	Fig. 7. Concentration C/Cy profiles on the curved surface. § = 23 mkm, V=3 m/s
	Fig. 8. Distribution of particle mass concentration C/C;, near the wall for different vertex angles a of cone.
	Fig. 9. The tangential velocity lag dV, for different vertex angles a of cone
	Fig. 10. The normal velocity lag dV,, for different vertex angles a.of cone
	Fig. 11. Bench for dust removing from the flat plate and the curved surface
	Fig. 12. Bench for dust removing from the cone surface
	Fig. 13. Intensity of particle sedimentation / along the plate.
	Fig. 14. Intensity of particle sedimentation / along the plate. õp = 23 mkm, Vy = 1.5 m/s.
	Fig. 15. Intensity of particle sedimentation / along the curved surface. Vj; = 3 m/s.
	Fig. 16. Intensity of particle sedimentation / for different vertex angles aof cone.
	TAHKE LISANDI JAOTUS ERIKUJULISTE KEHADE LAMINAARSES PIIRIKIHIS JA KEHADE PINNAL

	BOUNDARY LAYER EFFECTS IN THE DUSTY GAS FLOW OVER A BLUNT BODY
	Untitled
	Fig. 1. Particle streamlines in the boundary layer near the stagnation point for particles of different size, T,,/To = 2.0. a — f correspond to (r,/a) X 10% = 4.0, 4.21, 4.37, 4.39, 4.41, 4.42.
	Fig. 2. Variation of the particle Knudsen number, Mach number and Reynolds number along the particle streamlines shown in Fig. la.
	Fig. 3. Variation of the particle Knudsen number, Mach number and Reynolds number along the particle streamlines shown in Fig. lc.
	Fig. 4. Comparison of y-components of the force acting on a particle inside boundary layer. T,/To = 2, rJa=4.37 x 10°, 2, Ja = 0.002.
	Fig. 5. Streamlines of particles in the shock layer of a sphere, T,/T, = 0.4. a – r/a = 107, Ь – г/а = 10°.
	PIIRIKIHI MÕJU KERA UHTMISELE DISPERSSE VOOLUSEGA

	INVESTIGATION OF PARTICLE-WALL COLLISION
	Fig. 1. Determination of the value and direction of particle velocity; SV — sensitivity vector, N — number of particles crossing measuring volume per unit of time and registered by LDA.
	Fig. 2. Distribution of particle concentration along the X (horizontal) axis at a distance of Z from the collision point; / —=Z =4 mm, 2 – Z =4 mm (horizontal), 3 – Z=6 mm, 4-Z =8 mm. Curves I, 3, 4 — vertical velocity component was measured, Curve 2 — horizontal one. N/Nm — normalizes the number of particles crossing measuring volume per unit of time and registered by LDA.
	Fig. 3. Particle velocity as a function of the direction of the LDA sensitivity vector (collision angle — 60°).
	Fig. 4. Normal restitution coefficient (K) and coefficient of dynamical friction (f) of the particle as functions of the collision angle; /, 2 — К and f for corundum particles, 3, 4 -K and f for glass spheres ()
	Fig. 5. Normal restitution coefficient (K) and coefficient of dynamical friction (f) of the corundum particle as functions of the particle velocity.
	Fig. 6. Normal restitution coefficient as a function of the collision angle; / — Tabakoff [3]; 2 — Ushakov [%]; 3 — present work; 4 — Petrak [!]; 5 — Sommerfeld [].
	Fig. 7. Tangential restitution coefficient as a function of the collision angle; I — Tabakoff [3]; 2 — Ushakov [4]; 3 — present work; 4 — Petrak [l].
	TAHKETE OSAKESTE PÕRKEPROTSESSID METALLPLAADI PINNAL

	SIMULATION OF VORTEX RINGS INTERACTION BY THE METHOD OF LIQUID PARTICLES
	Fig.l. Basic stages of vortex rings interaction.
	Fig. 2. Colliding angle € as a function of initial angle /3 in the case Dg/Rg = 4.
	KEERISRÕNGASTE KOOSTOIMEPROTSESSIDE NUMBRILINE MODELLEERIMINE VEDELATE OSAKESTE DÜNAAMIKA ABIL

	FLOW OF AIR AND PARTICLES MIXTURE IN A DISINTEGRATOR
	Fig. 1. A disintegrator consists of two rotors /, 2 and two motors 3, 4 revolving in opposite directions. Each rotor contains one or more treatment rings 5, they consist of a number of grinding tools 6.
	Fig. 2. Particle movement between and in the treatment rings 5. A particle falls on the grinding tools (blade) 6, breaks, slides along the blade and leaves it with velocity v,. The velocity of next collision is vy,
	Fig. 3. Disintegrator under the separative grinding conditions. / — Disintegrator, 2 — Classifier, 3 — Material feeder, 4 — Separation of fine particles from air, 5 — Air circulation, 6 — Coarse material circulation.
	Fig. 4. Inertial classifier consists of a grid of sloped strips. a — slope, s — step of the grid, / — width of the strip, pg, p; — pressure before and after the grid, A+M — mixture of air and material, CM — coarse material, FM — fine material.
	Fig. 5. Model of the movement of air layer and a particle in a slit of the grid.A p — pressure drop, & —thickness of the layer, r — radius of curvature, R, ¢ — polar coordinates of a particle.
	Fig. 6. Dependence of the air layer thickness & and that of the curvature radius r, on the pressure drop in the grid.
	Fig. 7. Movement of coal particles of various size in a slit of the grid. In these conditions the size of bound particle is 33 pm.
	Fig. 8. Dependence of the size of bound particle d, of classification on the air velocity v in the classifier.
	Fig. 9. Dependence of the size of bound particle on the slope of the blades of grid strips The slope has the optimal values of 10°-12°.
	Fig. 10. Dependence of the size of bound particle on the air velocity in the grid slit for coal: a — theoretical dependence; b — experimental results with DSL-38.
	Fig. 11. Dependence of the size of bound particle on voluminal concentration of particles in the air. The ordinary concentration is less than B < 1073,
	Fig. 12. Dependence of the residue Rgq on the slope of grid strips. The optimal value is the same as shown in Fig. 9.
	Fig. 13. Variability of the quality of classification along the longitude of the grid. ¢ — parameter of sharpness of separation, Egy — Barski-Hankock coefficient, Rgq — residue on the sieve with the meshes of 90 um.
	Fig. 14. Dependence of residue Rgj on the working time. / — closed air system, 2 — 15% of circulating air flows through.
	Fig. 15. Dependence of Rgg on the productivity of disintegrator for different air aspiration through the grid: 7 — Oasp = 0.12500 am» 2 — Oasp = 0:25O0am: 3 — Oasp=Cam-
	Fig. 16. Dependence of specific surface area S, on the specific energy consumption E: 1, 2 – a ball mill [*], 3, 4 — DSL-38 direct grinding with three and five row rotors, correspondingly, 5 — DSL-38 under the condition of separative grinding.
	ÕHU JA MATERJALI SEGU LIIKUMINE DESINTEGRAATORIS
	SHORT COMMUNICATIONS LÜHITEATEID КРАТКИЕ СООБЩЕНИЯ

	VALIDATION OF LAGRANGIAN MODELS FOR PARTICLE-TURBULENCE INTERACTION
	THE EFFECT OF WALL ROUGHNESS ON PARTICLEWALL COLLISIONS: EXPERIMENTS AND MODELLING
	CALCULATION OF SEDIMENT TRANSPORT WITH A SECOND MOMENT TURBULENCE CLOSURE
	Experimental conditions

	LDA DIAGNOSTICS OF VELOCITY CHARACTERISTICS IN WATER-PARTICLE MIXTURES
	Untitled
	Fig. 1. The effect of concentration and particle sizes on the absolute fall velocity. Fig. 2. The relative and absolute velocity profiles in an inclined vessel (inclination of vessel —1%). : `
	Fig. 3. Vertical velocity profiles of suspension of glass particlesd = 1.9 mm, cv=l.lB%
	Fig. 4. Energy spectrum function for suspension of glass particles d = 1.9 mm, cv=l.lB% (r/R = -0.537).
	EESTI TEADUSTE AKADEEMIAS
	EESTI TEADUSTE AKADEEMIA ÜLDKOGU ERAKORRALINE KOOSOLEK 5. mail 1994
	Eesti Teaduste Akadeemia üldkogul 5. mail 1994. aastal osalenud Eesti teadlaskonna esindajate DEKLARATSIOON
	EESTI TEADUSTE AKADEEMIA ÜLDKOGU 1994. aasta 5. mai OTSUS NR. 1
	Contribution
	EESTI TEADUSTE AKADEEMIA ÜLDKOGU 1994. aasta 5. mai OTSUS NR. 2 Filosoofia, Sotsioloogia ja Õiguse Instituudi nime muutmisest
	LEEDUS OLID KOOS BALTIMAADE TEADUSTE AKADEEMIATE JUHID
	EESTI VABARIIGI 1994. AASTA TEADUSPREEMIAD
	CHRONICLE KROONIKAT
	Richard Villems 50
	Richard Villems 50
	List




	1994
	CONTENTS OF VOLUME 43

	Cover page
	Untitled


	Illustrations
	Fig. 1. The character of the particles’ distribution by transverse velocities.
	Untitled
	Fig. 2. The variation of R with К, for Favre's averaging: /- k_=o;2-k =0.5;3-k =l. Fig. 3. R values calculated by Egs. (21), (32), and (33): I-kt = ; 2—kt =0; 3—kt =0.5.
	Untitled
	Untitled
	Fig. 4. k(k,) at A =o.sand k_=-1: I – Eq. (21); 2 – Eq. (25); 3 – Eq. (32); 4 – Eq. (33) Fig. 6. The variation of S with k,: 1, 3 — approximation (18); 2, 4 — approximation (23); 1,2 -k,=l; 3,4 -k, =0.5; a — Favre's averaging; b — averaging by time (k_ = 0); c — averaging by time. Fig. 5. The coefficient in the BC for equation of mass conservation: I, 2 — Favre's averaging; 3, 4 — averaging by time; /, 3, 4 – x=os2-x=0253-k =O;4-k=-1.
	Fig. 1. Aerodynamical bench: I — main channel; 2 — channel of accompanying pure air flux; 3 — a dust suck-out channel; 4 — a device for the formation of the given flow field; 5 — blower; 6 — dispersed phase dosimeter; 7 — pure air dosimeter; 8 — thermocontroller; 9 — flowmeter; 10 — pressure converter; // — He-Ne laser; /2 — sending optics; /3 — receiving optics; /4 — registering, processing and controlling system; /5 — confuser; /6 — system оЁ grates; /7 — particle screw feeder.
	Fig. 2. The flat plate and the curved surface.
	Fig. 3. The cone model
	Fig. 4. Axial velocity of gas V/V, and concentration C/C, profiles on a flat plate. õp = 32 mkm, V= 1.5 m/s.
	Fig. 5. Axial velocity of gas V/V; and concentration C/C profiles on a flat plate. V= 1.5 m/s, X = 100 mm.
	Fig. 6. Concentration C/C, profiles on a flat plate. $ = 23 mkm, Vp =l5 m/s, X 100 mm.
	Fig. 7. Concentration C/Cy profiles on the curved surface. § = 23 mkm, V=3 m/s
	Fig. 8. Distribution of particle mass concentration C/C;, near the wall for different vertex angles a of cone.
	Fig. 9. The tangential velocity lag dV, for different vertex angles a of cone
	Fig. 10. The normal velocity lag dV,, for different vertex angles a.of cone
	Fig. 11. Bench for dust removing from the flat plate and the curved surface
	Fig. 12. Bench for dust removing from the cone surface
	Fig. 13. Intensity of particle sedimentation / along the plate.
	Fig. 14. Intensity of particle sedimentation / along the plate. õp = 23 mkm, Vy = 1.5 m/s.
	Fig. 15. Intensity of particle sedimentation / along the curved surface. Vj; = 3 m/s.
	Fig. 16. Intensity of particle sedimentation / for different vertex angles aof cone.
	Untitled
	Fig. 1. Particle streamlines in the boundary layer near the stagnation point for particles of different size, T,,/To = 2.0. a — f correspond to (r,/a) X 10% = 4.0, 4.21, 4.37, 4.39, 4.41, 4.42.
	Fig. 2. Variation of the particle Knudsen number, Mach number and Reynolds number along the particle streamlines shown in Fig. la.
	Fig. 3. Variation of the particle Knudsen number, Mach number and Reynolds number along the particle streamlines shown in Fig. lc.
	Fig. 4. Comparison of y-components of the force acting on a particle inside boundary layer. T,/To = 2, rJa=4.37 x 10°, 2, Ja = 0.002.
	Fig. 5. Streamlines of particles in the shock layer of a sphere, T,/T, = 0.4. a – r/a = 107, Ь – г/а = 10°.
	Fig. 1. Determination of the value and direction of particle velocity; SV — sensitivity vector, N — number of particles crossing measuring volume per unit of time and registered by LDA.
	Fig. 2. Distribution of particle concentration along the X (horizontal) axis at a distance of Z from the collision point; / —=Z =4 mm, 2 – Z =4 mm (horizontal), 3 – Z=6 mm, 4-Z =8 mm. Curves I, 3, 4 — vertical velocity component was measured, Curve 2 — horizontal one. N/Nm — normalizes the number of particles crossing measuring volume per unit of time and registered by LDA.
	Fig. 3. Particle velocity as a function of the direction of the LDA sensitivity vector (collision angle — 60°).
	Fig. 4. Normal restitution coefficient (K) and coefficient of dynamical friction (f) of the particle as functions of the collision angle; /, 2 — К and f for corundum particles, 3, 4 -K and f for glass spheres ()
	Fig. 5. Normal restitution coefficient (K) and coefficient of dynamical friction (f) of the corundum particle as functions of the particle velocity.
	Fig. 6. Normal restitution coefficient as a function of the collision angle; / — Tabakoff [3]; 2 — Ushakov [%]; 3 — present work; 4 — Petrak [!]; 5 — Sommerfeld [].
	Fig. 7. Tangential restitution coefficient as a function of the collision angle; I — Tabakoff [3]; 2 — Ushakov [4]; 3 — present work; 4 — Petrak [l].
	Fig.l. Basic stages of vortex rings interaction.
	Fig. 2. Colliding angle € as a function of initial angle /3 in the case Dg/Rg = 4.
	Fig. 1. A disintegrator consists of two rotors /, 2 and two motors 3, 4 revolving in opposite directions. Each rotor contains one or more treatment rings 5, they consist of a number of grinding tools 6.
	Fig. 2. Particle movement between and in the treatment rings 5. A particle falls on the grinding tools (blade) 6, breaks, slides along the blade and leaves it with velocity v,. The velocity of next collision is vy,
	Fig. 3. Disintegrator under the separative grinding conditions. / — Disintegrator, 2 — Classifier, 3 — Material feeder, 4 — Separation of fine particles from air, 5 — Air circulation, 6 — Coarse material circulation.
	Fig. 4. Inertial classifier consists of a grid of sloped strips. a — slope, s — step of the grid, / — width of the strip, pg, p; — pressure before and after the grid, A+M — mixture of air and material, CM — coarse material, FM — fine material.
	Fig. 5. Model of the movement of air layer and a particle in a slit of the grid.A p — pressure drop, & —thickness of the layer, r — radius of curvature, R, ¢ — polar coordinates of a particle.
	Fig. 6. Dependence of the air layer thickness & and that of the curvature radius r, on the pressure drop in the grid.
	Fig. 7. Movement of coal particles of various size in a slit of the grid. In these conditions the size of bound particle is 33 pm.
	Fig. 8. Dependence of the size of bound particle d, of classification on the air velocity v in the classifier.
	Fig. 9. Dependence of the size of bound particle on the slope of the blades of grid strips The slope has the optimal values of 10°-12°.
	Fig. 10. Dependence of the size of bound particle on the air velocity in the grid slit for coal: a — theoretical dependence; b — experimental results with DSL-38.
	Fig. 11. Dependence of the size of bound particle on voluminal concentration of particles in the air. The ordinary concentration is less than B < 1073,
	Fig. 12. Dependence of the residue Rgq on the slope of grid strips. The optimal value is the same as shown in Fig. 9.
	Fig. 13. Variability of the quality of classification along the longitude of the grid. ¢ — parameter of sharpness of separation, Egy — Barski-Hankock coefficient, Rgq — residue on the sieve with the meshes of 90 um.
	Fig. 14. Dependence of residue Rgj on the working time. / — closed air system, 2 — 15% of circulating air flows through.
	Fig. 15. Dependence of Rgg on the productivity of disintegrator for different air aspiration through the grid: 7 — Oasp = 0.12500 am» 2 — Oasp = 0:25O0am: 3 — Oasp=Cam-
	Fig. 16. Dependence of specific surface area S, on the specific energy consumption E: 1, 2 – a ball mill [*], 3, 4 — DSL-38 direct grinding with three and five row rotors, correspondingly, 5 — DSL-38 under the condition of separative grinding.
	Untitled
	Fig. 1. The effect of concentration and particle sizes on the absolute fall velocity. Fig. 2. The relative and absolute velocity profiles in an inclined vessel (inclination of vessel —1%). : `
	Fig. 3. Vertical velocity profiles of suspension of glass particlesd = 1.9 mm, cv=l.lB%
	Fig. 4. Energy spectrum function for suspension of glass particles d = 1.9 mm, cv=l.lB% (r/R = -0.537).
	Untitled

	Tables
	Experimental conditions




