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Abstract. A consistent and correct method of the boundary conditions for transport equations of

mass, momentum and energy of particles in two-phase turbulent flows is developed. Two

ensembles of particles moving to and from the wall are considered. The different methods of

averaging, approximation of particle distribution along the lateral velocities and properties of

interacting surfaces are under analysis.
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1. INTRODUCTION

For integration of two-dimensional Euler eguations of confined

particle-laden gas flows, it is necessary to have two boundary conditions

(BCs) on the transverse coordinate y. The formulation of the first BC is not

difficult. For example, on the axis of an axisymmetric channel we have

d@/dy = 0, where¢ = p, U, T, ...; where p is the distributed density
of the particles, U,T are their velocity and temperature, respectively, and

the bar means averaging. For а boundary layer flow, the particles'

parameters on its external boundary are usually known (e.g., from

calculations of the inviscid flow core).

At the same time, the formulation of the second BC is rather difficult.

Johansen [!] supposes that the mean longitudinal slip velocity on the axis

of a vertical flow is equal to particles' terminal velocity (it would be true

for the case of absence of transverse particles' mixing). Moreover, such a

BC does not take into account the peculiarities of particle-to-wall
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interaction. Therefore it is advisable to formulate the second BC just on

the wall and in order to do so, some authors use non-substantiated

hypotheses to determine the particles' mass flow rate onto the surface,
momentum and energy losses due to the wall. In [> 3], similarly to the

carrying gas, it is supposed that z:w = 0 (u 1s the axial velocity, index w

refers to particles' parameters near the wall), in [* °] a formal, but

physically non-justifiable analogy with a rarefied gas flow is used. In 1%
the BC is obtained from the averaged equations of gas and particles' axial

motion

-
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Here v is the transverse velocity, p is the pressure, o is the particles'
volume concentration, p, M, are the laminar and turbulent dynamic
viscosities, respectively, F is the force of interphase interaction, G is the

external force, symbols with an index g refer to the gas, and without an

index — to the particles. Further on, the authors N integrate the sum of

Egs. (1) and (2) over the channel cross-section; for a stabilized flow

(д( ) /дх = 0), provided that o.= const, U, = 0 апа v= 0 near the wall,

they obtain the BC

ЁЁ
=

] R(õš _)
— 8;3ay|w - „&[2 »S) l

O

where R is the channel radius. In addition to accepted hypotheses (see

below), Eq. (3) has an important demerit: here the dynamics of particle-to-
wall impact and their physical properties are not taken into account.

For the conservation equation of the particles' mass, the simplest BC

either p, = 0 (perfectly absorbing wall) or (dp/dy) = O (perfectly

reflecting surface) is usually used. In [7] one can find an analysis of

applicability of these assumptions. Obviously, to construct strict and well-

grounded BC, it is necessary to study the particle-to-wall interaction in

detail. As far as we know, there are only two groups of papers in this field

to be considered below.
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2. THE SOLUTION BY KONDRATYEV AND SHOR

Kondratyev and Shor [3] consider two ensembles of spherical particles:
one of them moving to the wall, and the other — from it (their parameters
we shall mark by indices 1 and 2). The translational and angular (®)
velocities of particles 1 and 2 are subordinate to the equations of a single
impact without sliding [];

U, = (s+2kt)ul/7+ (1 —k„c) (Dld/7; У, = —knvl;
A

0, = (skl+2) (01/7+ 10(1 —k,c)ul/(7d) ,

where d is the particle diameter, k, and k_ are the restitution coefficients

for normal and tangential velocity components at collision (o<k, < 1;
-1 < kT <1), respectively; in Eq. (4) it is supposed that the only non-zero

component of the vector ® is perpendicular to the x-y plane. The particles'
distribution for every ensemble is approximated by a 8- function

f; (u, v, ®) =õ(u-—ui)õ(v—vi)õ(co—o)i) (5)

and it is supposed that the BCs do not depend upon the form of

approximation (see below). Since for a reflecting wall the normal

components of the mass flow rates of particles 1 and 2 have equal
magnitudes (J,; = —J,;»), the distributed densities are >

Py P K FITFRY P, = PL7 (TPRY. (6)

Then with the aim of a formula

0 = (P +P)" (9,9, +o,p,). (7)

the mean values of the particles' parameters near the wall are calculated

uw=Muul; vw=kanvl; (Dw=Mmul/d;

1 10 (I—-k,)*k,
M = ———X|Tk +s+2k -———m—m—m —|; M =0;

“ T(l+k) л * 7+К, (5к,+2) v

n ) T

(8)
10(1-k,) (1-k,k,) 0,

M, = — ——— )k= —.
° (I+k)[7+k,(sk,+2)]" °°

0,

The authors [B] suppose that k(o (as k, or kt) is a constant, but from Eq. (4)
we can see that kdepends upon u;/d and ®,. Similarly to (8), the mean

square of the particles' transverse velocity fluctuations and the Reynolds
stresses in the disperse phase are found
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Finally, the BC for the equation of the axial motion of particles has the

form

—\l72_ _К(\›' )w u, = —vt(au/ay) и
(10)

where v is the kinematic viscosity. From Eq. (7) it is seen that the

particles' parameters are averaged here similarly to the known Favre's

method in the theory of single-phase turbulent flows, while the transfer

equations are derived in ) using conventional time averaging. From our

view-point, this is a wall (very interesting for practice) that is not

considered in [®], and for the particles temperature the simplest BC

(0 T/dy),, = 0 is used.

3. THE SOLUTION BY DEREVICH ET AL.

An attempt to derive more strictly the BC for the equation of the

particles' mass transfer is undertaken in [7]. To describe the interaction

with the wall, a coefficient x is introduced (% = O for a perfectly
absorbing and y = 1 for a perfectly reflecting surface). For a kinetic layer
near the wall, a one-dimensional equation for the particles' distribution
function f by transverse velocities (dp =fdv) is written

g
0 e parsicims S DA fK(f) —‘cvay+(vg+tGy)av = Tav2+a" =L (f), (11)

where T is the relaxation time, D is the particles' turbulent diffusivity.

Similarly to the known Chapman-Enskog method, an approximate
solution of Eq. (11) is constructed as a series f = z:= Of(") ,

where

only two members are taken into account. In the zero approximation, the

left-hand-side of Eq. (11) is omitted, whereupon the solution obtains the

Maxwellian form

1/2
—

2
(0)

— _Ё_) —У 12/ (21:1) pexP[ 21)]' (12)

The next term£(! 1 determined from the equation L(f(")) = KfO)
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7 =/Ф( + Су ?), (13)

where B and C depend upon p, D, T, v, and G,. The character of the

function f is illustrated in Fig. I,a, but the solution does not agree with

the second formula (4). Moreover, for low x the flow rate of the reflected

particles |
0

an = —x]nl — J.vfdv (14)

must be small enough by its modulus (or J,» = 0 if x = 0), so the f
function must be negative for some v, but suchf values have no physical
sense. (In consequent paper ['9] more realistic, binormal distribution at

К, =1 1s used). From (14) we have

1= (2D} /2~

It should be noted that in the BC (15) the influence of k,, is not taken into

account, but physically it is clear that this coefficient must have an effect

on the BC.

The case of a perfectly reflecting wall at arbitrary k, values is

considered in [ll]. The analysis similar to Egs. (11)—(14) gives the BC in
the form of (15), where 7 is replaced by k,,. It should be noted that there

seems to be a mistake in these considerations: the authors [ll] obtain the

relation J,, = — k,J,I, but а! proper reflection, it must obviously be

Fig. 1. The character of the particles’ distribution by transverse velocities.
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„2 ==Jpl. In this paper, the BC for the equation of axial motion of non-

rotating particles is also obtained; this BC can be written in the form (10),
where R is determined by formula

э
\!/2 I—l‹п(s+2/ст) /7

К = (—)——— (16)
T I+k(s+2k) /7

We shall return to the analysis of Eq. (16) later. In [l2] the BC for the

equation of the particles' heat transfer (similar to (16)) is built. It should be

emphasized that all considerations (11)—(16) are carried out in the frame of

an averaging procedure.

4. NON-ROTATING PARTICLES. FAVRE'S AVERAGING

From the results described above it is clear that all the known BCs for

the equations of particles' transfer have some demerits. So it is advisable to

return to this question and to formulate the BCs for various cases which

can be met with in practice. From our viewpoint, the approach [B] better

describes the real physical picture of the particle-to-wall interaction than

other variants. We shall use a method similar to [B] but for different

averaging procedures, approximations of the f(v) function, properties of

interacting surfaces, and arbitrary x values. For simplification, the

particles' rotation is not taken into account. We ascribe one magnitude of

the axial velocity and the temperature (uy, uy, Tl, T) to all particles of

each ensemble. The change of particle temperature during collision is

described by the formula

Т›= Т, + (т°- Т) (17)

where T is the wall temperature, 0 < kq <l. .
Let us assume that the particles distribution by transverse velocities is

similar to (5), i.e.

fiv=p;d(v-v,(i=l,2). (18)

From (14) it follows that the distributed densities of two ensembles are

Py = Pk, (X+k); py=p X/ (XHK). (19)

The calculation of the mean values of the particles' parameters near the

wall by formula (7) with the account of Eqs. (4) (where o, =0) and (17)

gives

M
=7kn+x(s+2kt).

м =
I=*.

и T(x+k,)
°

Y x+k,
(20)
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- [kn+x(l—kq)]Tl+xquO
KR ZAU

n

Here the meaning of M,, M, is the same as in (8). Then we find the

correlations of the particles' fluctuation parameters:

2

se|
(X+k„)2 Tk, +x(s+2k,)'

(21)

—

—- \l/2
_

VT = S(v'z)w (т„ -Т; 5 = fuk, [k, +x(l-k)]l7",
where N, R are determined like (9). Obviously, the BC for the equation of

motion has the form (10) with the R value from (21). For mass and energy
transfer we have

kn l—x
:

»

-

I+/‹п
2)1/2 EW; o = ,х—--nw

2)1/2(;“’_ ) =S(v'
w

7

where ais the thermal diffusivity. According to (22) (d7/dy )
w

= o(as

in [®]) only if k, = 0. The Q function substantially depends upon k,, i.e.

upon the conditions of the particles' transverse motion (compare with

(15)). If x = 1 Egs. (19)—(21) are reduced to (6), (8), (9), where km= 0.

Now let us assume (see Fig. 1, b)

2 kan __V_z_
:0 - gy| )

-
(23)

2 — Р„х _„
f2(V) š x/;vokn(x+kn) cxp[ Zkšvš]

(at k, = 1 approximation (23) coincides with [Ю]). It is clear that (23)

describes in a better way the particle-to-wall impact than (12) and (13) do

— some particles from the first ensemble with the velocities v,, dv,, after

collision transform into group vy, dvy, (v, > 0, vy, = - k,v,), therefore thef
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function must have a discontinuity at v = 0. The mean transverse velocity

of the particles 1 is У, = р;l_[o fivdv = vOJZ/7t. The mean values of

the particles' parameters in this case are

oo 0

-—

Ф„ =р [[fodv+ [ fz(pdv]. (24)

0 —OO

As a result we obtain

2k —

g
O~ L 0 N 2 A

l+xk, 2k(1-%)° > ,2knx(l+kn)(l—kt)
__—; К= —|-- -— ———— — ; (25)
xXtk, 11:(x+k„)2 TN 1x M„(X'*'k„)2

;
2k, Xk, (I+k,)

A

k) Tk +x(I=K)]

(M,, O, R, S are the same, as in (9), (20), (22)).
For comparison's sake, some other approximations of the f function

were considered. For uniform distribution

puk,/ [vg(Xx+k)1, osvsy,,
fl (v) =

0, V>V,
(26)

0, v<—vok ‚
n

fz(v) . {-—
puwX/ [vok, (X +k,)]l, —vok, <v<o

we have

NO2(X+k,) Lty
°

(27)

7(х+/‹„)2М„(№°)1/2 N 2 (x+k,) [k, +x(l-k)]
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For log-normal distribution

Р, [ ln2(v/vO)J= ——ep -a|! (x+k„)«/švlno 21,120 .
_ ,

(28)

P, [ln (v/(knvo))J= ————— p|———

|,f
(x +k,) У2пуlпс 210°

the BC for the equation of motion has the form

2 knx(l+kn)(l—kt) 1 2
К= — T ‚— %р (—lll 0');

М (x+k,)*M,
2

(29)
1+9k y D2

NO= ——nexp(lnzc)—k Ц
ехр (1[126).

x+k, "lxt+k,

Atln ¢ =0 Egs. (29) are reduced to (21). If distributions

f=Avkexp(-v2lv)), (k=l2 (30)

are used, the formulae for R are similar to (27), but with other numerical

coefficients.

5. NON-ROTATING PARTICLES. AVERAGING BY TIME

If instead of Favre's method we use conventional averaging by time, the

distribution function f(v) obtains another sense: in this case fdv being not

the density of v, dv group, but the probability of some particle to have

transverse velocities in the range v, dv (I.е. J-fdv ='l).- Since the

probability of particles' i passing through some point is proportional to the

specific mass flow rate pil fill ,
formulae (7), (24) must be replaced by

— Ф|Р,,+ Фэр ,
Ф =———-—v

P U +P,U,
o0 0 (31)

9, = (p,U, +p2U2)-1 [PJUlfl‘pd"+pz _[ U2f2(pdv].
0 —OO
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In the same approximation of boundary layer v; << u;, and we can replace
U; in (31) by w;. If approximation (18) is used, similarly to (20)—(23) we

have j

M, = [49k, +l(s+2k)?]/ (70);
T, = {[Th,+x(l=k) (s+2k) IT, +xk(s+2k)T}/9;

Tx(l+k )* (5+2k,) ka 1x
NF 2ANa

¢ TR (32)

2,kN(1-k) JW
R=

W; S=

W’
o=Tk+x(s+2k).

As in Eq. (20), the mean transverse velocity differs from zero (except in

the case x =l, k,, = 1, when M,, = 0). That is why the hypothesis v,, =0

used while obtaining Eq. (3) is incorrect in a general case. At k. = 1 Вдs.
(32) forM,, T,,, N, Q and S turn into (20)—(22) because here the averaging
procedure (31) is reduced to (7), (24).

For approximation (23) one can obtain

05l ZFXJIT„(Hkn) (1-k)) (s+2k) (il Tk, (s+2k)
> ¢2Mufi ¢

(33)

_zkn[7—x(s+2kt)]2' Szjž 7xquk—n(l+kn)(s+2kT)
" фФ “¢[7kn+x(l-kq) (s+2kt)]«/I—\l_o

(formula for Q is the same as in (25) but with N
O

from (33)). The BCs on

the basis of approximation (26), (28), (30) are derived in a similar way;
these formulae are not presented here.

6. ROTATING PARTICLES

The results obtained can be generalized for the case of the motion of

rotating particles. For Favre's averaging and ¥ = 1 from Egs. (4), (7) we

obtain the mean values of axial and angular velocities
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— ]
= ———— [ (7k +s+2k +(1-k)do,];uw

7(l+kn)
[(

n T)ul ( Т) l]
(34)

— 1
о, = m+—kn)‘[(7kn+skt+2)‘°l+lo(l_kr)“l/d]'

The solution of the system (34) gives us the values of u; and ;.

According to Egs. (8), (9) in this case ;W = 0, (_\7'2)„‚ = k„v%. After

calculating the u'v' correlation, we obtain the BC for the equation of

motion

A/k_n(l-kt) (——2)l/2 4

49(1+k)(k+k) võ), [207%,+10k,-3)4,+
о

—

(35)
+ (Tk+4k_+3)do,] = —vt(au/ay)w,

7. DISCUSSION

Comparison of formulae (21), (22), (25), (27), (29), (32), (33), (35)

shows that the BCs depend upon the form of f(v) approximation. This

question is considered in detail for the R values from Eqgs. (21), (25), (27),

(29) where, for simplification, we set % = 1. In this case the formulae

mentioned (except (29) !), and the dependencies for R corresponding to the

distribution (30) differ from each other only by numerical coefficients: 2

for (21); 242/7 for (25); /3 for (27); Ё а! & = 1 апа 4/2/ (Зж) а

k = 2 for relations following from (30). Thus the R values differ from each

other by not more than 25%. At the same time, Eq. (29) substantially
differs from other formulae because if Inc is large enough according to

(29), the R values can be very small. Certainly, the distribution (28) and

especially a large Inc do not describe any real process; nevertheless, this

example demonstrates the dependence of R upon the form off(v). Simple

physical considerations show that for real flows the particles' distribution

by transverse velocities must be close to (23) (see Fig. 1, b). That is why
we shall consider only such results which correspond to (23) and to the

simplest approximation (18).

Fig. 2 illustrates the influence of the approximation on the R value.

Here a qualitative difference between curves attracts our attention —

according to (21), (25) R increases with the growth of k,, yet, according to

(16), it decreases. The first type of pattern seems to be more realistic.
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Besides, according to (16), for R to be equal to zero it is necessary that

not only k, = 1, but k, = 1, too. The second condition is superfluous
because on a perfectly smooth wall the Reynolds stresses or the

momentum losses are equal to zero at arbitrary k,. While using time

averaging, the character of the R dependence upon the form of

approximation (Fig. 3, x = 1) is similar to thatconsidered earlier. At k. <

0 the method of averaging has a noticeable influence on the BC. The

results for partially absorbing the wall are presented in Fig. 4 — here the

divergences between various curves are somewhat greater than for the

case x = 1.

Fig. 5 illustrates the dependence of the BC for the mass conservation

equation upon ky, k_, T and the method of calculation. It can be seen that

a significant difference exists between Q values obtained by various

formulae. It should be noted that the approximation (18) does not allow

to analyze an extreme case ) =0 (perfect absorbtion): here N = 0,

Fig. 2. The variation of R with К, for Favre's

averaging: /-k_=o;2-k =0.5;3-k =l.
Fig. 3. R values calculated by Egs. (21), (32),
and (33): I-kt = ; 2—kt =0; 3—kt =0.5.
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Fig. 4. k(k,) at A =o.sand k_=-1: I - Eq. (21); 2 - Eq. (25); 3 - Eq. (32); 4 - Eq. (33)

Fig. 6. The variation of S with k,: 1, 3 —

approximation (18); 2, 4 — approximation
(23); 1,2 -k,=l; 3,4 -k, =0.5; a — Favre's

averaging; b — averaging by time (k_ = 0); c —

averaging by time.

Fig. 5. The coefficient in the BC for equation
of mass conservation: I, 2 — Favre's

averaging; 3, 4 — averaging by time; /, 3, 4 -

x=os2-x=0253-k =O;4-k=-1.
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(\›'2) = 0, and the particles' flow rate J,,,, cannot be connected with the

fluctuation transverse velocity (see Eq. (22)). At the same time, more

realistic approximation (23) provides the opportunity (0 consider this
case, because N

¥
= k;l (1-2/ж) #O. From (25) it can be seen that the

particles' density near the wall differs from zero for x = 0; this fact

confirms considerations [’]. In Fig. 6 the values of the coefficient in the

BC for the energy equation are presented. At kg = 1 the function S(kj,)
decreases with the growth of k,, ап at k, = 0.5 it has a maximum.

8. CONCLUSIONS

The BC for the equations of mass, momentum and energy conservation

of the disperse phase have been constructed on the basis of approach ™.
using various averaging procedures and various approximations for

particles' distribution by transverse velocities. In a general case the BCs

depend upon four coefficients: k,,, k_, k, and . The formulae obtained
.= 9

:

have been compared with the known results. The influence of the

averaging method, the form of the function f(v) and physical properties of
the particles and the wall on the coefficients in the formulae for BCs has

been studied.
It should be noted that our model of particle-to-wall interaction is not

unique. Other models accounting for the possibility of sliding are

described in [l3’ 14].
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OSAKESTE MASSI, IMPULSI JA ENERGIA

ULEKANDEVORRANDITEPIIRTINGIMUSED TURBULENTSES

KAHEFAASILISES VOOLUSES

Aleksander SRAIBER, Vladimir NAUMOV

On esitatud range jirjestikune meetod osakeste massi, impulsi 1а
energia lilekandevorrandite piirtingimuste piistitamiseks turbulentses

kahefaasilises vooluses. On analiilisitud keskendamise ja osakeste jaotuse
aproksimeerimise meetodeid kahe erisuunalise osakeste ansambli puhul.

ГРАНИЧНЫЕ УСЛОВИЯ ДЛЯ УРАВНЕНИЙ ПЕРЕНОСА МАССЫ

ЧАСТИЦ, ИМПУЛЬСА И ЭНЕРГИИ В ТУРБУЛЕНТНЫХ

ДВУХФАЗНЫХ ПОТОКАХ

Александр ШРАЙБЕР, Владимир НАУМОВ

Развивается строгий и последовательный метод построения
граничных условий к уравнениям переноса массы, импульса и

энергии — частиц — в — турбулентном — двухфазном — потоке.

Рассматриваются два ансамбля частиц, движущихся к стенке и от

нее. Анализируются различные методы осреднения, аппроксимации

распределения частиц MO поперечным скоростям и свойства

взаимодействующих поверхностей.
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