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In this note we initiate the study of loops over semirings, which we

call loop semirings analogously to group semirings. Loop semirings are

nonassociative semirings. We study some properties of loop semirings.
The author in ['] calls a nonempty set of elements of L a loop if

in L there is defined a binary operation called the product and denoted

by - such that

(i) a, bL implies a-beL;

(ii) for every pair of elements a, b in L there is one and only one x in

L such that a-x=»b and one and only one y in L such that y-a=ob
in L;

(iii) there exists an element e<L such that a-e=e-a==a Tor all aeL,
e called the identity element of L.

Usually a loop is denoted by (L, -, e). For further properties refer

ю ['].
Louis Dale in [?] calls a nonempty set S to be a semiring if in 5

there are defined two operations, denoted by + and -, such that for

alla,b,cin S

(i) a+bisin S;

(ii) a+b=b+ua;

(iii) (a4b)+c=a+ (b+c);
(iv) there is an element 0 п S such that a+o=a (for every a in 5);

(v) а6 в т 5;

(vi) a-(b-c)=(a-b)-c;

(vii) a-(b+c)=a-b+a-c and

(b4c)-a=b-a+-c-a.
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A semiring S is said to be commutative if a-b=b-a for all a, b т 5.
A semiring S has zero divisors if ab=o(a+o, bs<o), a, b&S. A semiring
S is said to have identity if there exists 1S such that l-x=x-I=x
for all x in S. A semiring S is said to be a strict semiring if a, b<S,
and a+b=o implies a=b=o. For more properties refer to [2].

Definition 1. Let S be a semiring with identity 1 and let L be a loop.
We let SL denote the loop semiring of L over S; that is, SL consists

of all finite formal sums of a= 2 a(m)m with a(m)S and meL.
т Е1

(That is, we assume that in a= 3 a(m)m only finitely many a(m) in

S are different from zero.)
The elements of SL satisfy the following operational rules:

(i) X a(mym= 3 p(m)m<=>a(m)=n(m) for all meL

nž;(šn)ES, mnälf and ZLa(m)m and‘ ZLp(m)m are in SL);

(ii) mšLa(m)m+mšL u(m);;mš (a(m)+:(žn))m;
(i) ( 2a(m)m) (2 p(m)m) =m§L v(m)m,

where v(m)= X a(x)u(y) with xy=m.

Dropping the zero components of the formal sum we may write

2 a(mym= 3 a;m;, n finite.
т е 1, i=tl

If we replace e in L by 1 then we have a natural embedding of S in
SL given by s—s-1. (That is, after the identification of S with S-e=S§-1
we shall assume S<<SL). Clearly mr=rm for all meL and rS.

Remark. Clearly the loop semiring SL is a nonassociative semiring as L
is a nonassociative structure under multiplication.

Example. Z*, the set of all positive integers with 0 under usual addition,
is a strict semiring.

Theorem 2. Let L be a loop and Z* be the strict semiring of positive
integers with zero. The loop semiring Z*L is а strict nonassociative

semiring.

Ргоо!. The loop semiring Z*L is a nonassociative semiring by definition.
n m

Let a= Z(limi and B= 2 8,-mi be м Z*L. Н a+[3=o then
i=l i=l

k

> (a:+B;)m;=0. By (ii) of Definition 1, this is possible only when
i=l

a;i+Pßi=o, as a;, fi=Z* and Z* is a strict semiring; consequently, a;=

=B;=0. Hence е loop semiring Z*L is a strict nonassociative

semiring.

Theorem 3. The loop semiring SL is a strict semiring if and only if S
is a strict semiring for any loop L.

Proof. If SL is а strict semiring as we have S<<SL, so is $. Conversely,
if S is a strict semiring by Theorem 2, SL is a strict semiring.

Theorem 4. Let L be a finite loop and let S be a semiring without non-

trivial divisors of zero. Then SL has nontrivial divisors of zero if and

only if S is not a strict semiring.
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Proof. Let L= {m;=l, my, ms, ..., m,} be a finite loop of the order
n and let $ be a semiring without nontrivial divisors of zero.

n t

Let a=2a,—m,— and [3=EB,—m; be in SL with afi=o.
i=l j=l

Now ap=3yrmr=o implies that y.=o. But by (iii) of Definition 1,
k=l

we have ye=№аВ, mimj=m, for k=l, 2, ...,
n. Since S is a

semiring without nontrivial divisors of zero ме see S is not a strict

semiring.
Conversely, if S is not a strict semiring, choose a, p in SL such that

аВ==o, by using the fact that S can contain elements a, b such that

a+b=o.

Definition 5. A loop L is an ordered loop if it admits a strict linear

ordering << such that x<<y implies xz<<yz and zx<<zy for all zeL.

Theorem 6. Let S be a semiring which has no nontrivial divisors of
zero and let L be an ordered loop. The loop semiring SL has no divisors

of zero even if S is not a strict ring.
n m

Proof. Let a= 3 aim; and B= 3/ P;h; be in SL. To prove that ap+o
i=l j=l

it is enough if we prove that af=o implies a;f;=0; which will con-

tradict the fact that S has no nontrivial divisors of zero. Suppose m=

=n=l: we have nothing to prove. Suppose n=2, m=2. Since L is

ordered and my, my, ...,
m, and hy, ...,

hn are mutually distinct, we

may assume that my<<my« ... <<mn, i<<he« ... <<hm. We have af=
= 2 apjmh;. In ap=o, mihy is the ’smallest among m;h;, ie. we

I<i<n

1/т
have mihy<<m;h; for any i,j with I<<i, I<<j. Thus, if ap=o, we should

have a+Bi=o, which is a contradiction. Hence SL has no divisors of zero.

Theorem 7. Let S be a semiring in which ab=o for every a, b in S

(a, b distinct or otherwise), and L be any loop. Then the loop semiring
SL 15 such that ap=o for every a, B=SL (a, B distinct or otherwise).

Proof. Clearly S does not contain the identity 1; further, in SL we

have afp=o by (iii) of Definition 1. Theorem is proved.
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