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Abstract. The paper studies the dynamic input-output decoupling problem for discrete-

time nonlinear systems. Using the linear-algebraic framework and inversion algorithm
for this class of systems, the dynamic state feedback compensator of minimal dimen-

sion that solves the problem is obtained. j
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1. INTRODUCTION

The system is said to be input-output decoupled if each scalar control
variable (input) affects one and only one scalar output variable. If the

given system does not possess such a property, then one may try to

compensate the original system in order to achieve a decoupled system.
Depending on the permitted control laws, either static or dynamic
decoupling problems can be formulated. Our interest here is in the

dynamic input-output decoupling problem in which one achieves

decoupling by the dynamic state feedback.

During the last decade there has been much interest in the problem
of dynamic input-output decoupling of nonlinear control systems, both
continuous-time [!~7] and discrete-time [#-!°]. For continuous-time case,
the algorithms base either on the state-dependent transformations of the

output [*>% €], ог on the state-dependent transformations of the input
[.%4%7]. However, all the algorithms suggest different feedback control
laws. For the comparison of these algorithms, except ['], see [*]. Let
us also note that the algorithm by Xia [*] can be considered as a combi-
nation of ['] and [*]. In [''] the authors have focused on the problem
of finding the decoupling compensator of minimal dimension: they have

proved that a Singh compensator [®] is a decoupling compensator of
minimal order.

АП the papers considering the problem of dynamic input-output
decoupling for discrete-time nonlinear systems prefer the approach which
bases on the input transformations. The first attempt has been proposed
in [®] where a solution to the problem only for a fixed time instant is

given. However, [?] forms the starting point of the paper [!°], where the

problem has been studied locally in the neighbourhood of an equilibrium
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point о! the system. The results of [B] are valid on a larger subset than
the neighbourhood of the equilibrium point, and besides that the problem
of the computation of the feedback is addressed in the paper. The latter
is achieved via the application of the theory multiple Lie series to the
solution of the system on nonlinear equations. However, the fact that the
results are valid on the larger subset than the neighbourhood of the
equilibrium point make the algorithm more complicated: at every step
of the algorithm one must take care of the transformation of the subset
where the results hold.

In this paper we shall also consider the dynamic input-output
decoupling problem for discrete-time nonlinear system. Unlike [B-10]
we shall make use of the dual approach which bases on the inversion

(structure) algorithm, allowing the output transformations. Qur approach,
therefore, can be considered as the modification of the algorithms by
Singh ([®], and Li and Feng ([3] to discrete-time systems. We show how
to construct the dynamic state feedback compensator via the inversion

algorithm that solves the input-output decoupling problem locally around
an equilibrium point of the system. Furthermore, it will be shown that
the obtained compensator has a minimal order among all other regular
dynamic compensators that solve the input-output decoupling problem
for discrete-time systems. The last result can be considered as a discrete-
time counterpart of the results presented in [!!].

The paper is organized as follows. In Section 2, the problem formu-
lation is given. In Section 3, we briefly review the linear algebraic
framework ['?] as well as the properties of essential orders [!3 4] for
discrete-time nonlinear control system. Then, in the next section, the
inversion (structure) algorithm for discrete-time nonlinear system and
some of its properties are presented. In Section 5, via the inversion
algorithm, the compensator is obtained that solves the input-output
decoupling problem. In Secion 6, the linear algebraic framework allows
us to prove the minimal dimensionality of the decoupling compensator
obtained via the inversion algorithm.

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear plant P described by equations
of the form

x(t4l)=f(x(t), u(t)), х(0) =%,

y(t)=nh(x(t)), . (1)

yyhere t'he'statgg x(t),t=o, 1,
...,

belong to an open subset X of R,
the controls u(¢), =O, 1,..., belong to an open subset U of R™, and
the outputs y(¢), t=0,1,..., belong to an open subset Y of Rr, p<<m.
The mappings f and A are supposed to be analytic.

We are assumed to work in a neighbourhood of an equilibrium point
of system (1), that is around (x° u°) &XX U, such that f(x° u®)=х°.
From the fact that f(x° u°) =xo it follows that using the control sequence
u(0),u(1), ...

with each u(¢) sufficiently close to u° provided the dis-
turbance sequence w(0), w(1), ...

is such that each @ (#) is sufficiently
close to ©° we can assure that the states x(f) are sufficiently close
to x° and the outputs y(f) are sufficiently close to у’==й (х°).

The system (1) is said to be input-output decoupled if the first p
components of the control «, i.e u;, ..., up, independently influence the
p outputs y,, ..., yp, and all other components of the control «, i.e.
Up+, - -~ Um, affect none of the outputs.

I the system (1) is not input-output decoupled, we may try to satisfy
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this property via feedback, that is to find a state feedback compensator
such that the closed-loop system is input-output decoupled. |

We are looking for an analytic compensator C (dynamic state feed-

back) with a p-dimensional state 2z, a new m-dimensional control v,
described by equations of the form

z(t+1)=f(2(1),x(t),v(1)), 2(0) =2,
u(ty=hc(z(t), x(t),v(t)), (2)

defined locally around (to be found) a point (29, x° v° u®) that satisfies
the equalities 29=f¢(20, x°, v°) and иб== й© (х°, и°, #«°). Тпе K point
(2°, х°, o°, и°) is the equilibrium point of the compensator C, correspond-
ing to the equilibrium point (x° «° y°) of the plant P.

We call the compensator C described by the equation (2) regular if
the dynamic system

x(t4l)=f(x(t), h¢(2(t), x(1), v (1)),

z(t+l)=[c(2(l), x(2), v(1)), (3)

u(t)y=hc(z(), x(t),v(t)),

with inputs v(#) and outputs u(#) is invertible (see ['®] for details about
the notion of invertibility) around the point (x 2°% o°, u?).

L

The closed-loop system (1), (3), initialized at (x° 2°), that is the

system

х (#--1) ==[(х(o), #° (2(2), (7), 9(0)) ), х(0) =ж, — #(0)— 2о,
2(#-+-1) =[°(2(l), х(#), 9()), (4)

y(t)=h(x(t)) ;

is denoted by P~ C.

Definition 1. Local dynamic input-output decoupling problem., Given
the system P together with an initial state x,, described by equations
(1) around an equilibrium point (x° u®), find, { possible, a regular
analytic compensator C defined by equations of the form (2) together
with an initial state zy,, theequilibrium point (2° x% v°u®), and the neigh-
bourhoods Z°X XXV 0 of (2° x% v°) and U° of u®, being domain апа

range of C, so that the closed-loop system P-C described by (4) апа

initialized at (20, Xo), is input-output decoupled on ZO9XXOVOXU° .
Remark 1. The static input-output linearization problem is obtained

when p=dim z=o.

3. LINEAR ALGEBRAIC TOOLS

We briefly review a linear algebraic framework introduced by
Grizzle ['?] for the analysis of discrete-time nonlinear control systems.
This framework will be employed later on in our paper. .

Consider :a discrete-time nonlinear system described by equations

y(t)y=nh*(x(t), u(t)), ‚ (5)

where x, u, y, [ and h* are defined as in (1). Note that both the equations
of the plant (1) апа the compensator (2) can be given in this form.

Recall that a meromorphic function n is a function of the form

n=m/0, where л ап@ @ аге analytic functions with © not the zero

function. View x, u(0),...,u(n) as variables and let X denote the field

of meromorphic functions in the variables (x,«(0),...,u(n)).
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A system (5) is said to be generically submersive if the rank of the
Jacobian matrix of the function [(х, и) омег the fieldX of mero-

morphic functions is equal to the dimension n of the system, i.e. if

of oI и)] —гапі‹ж[Ёх_(Х› й), Э,
(° ©)

AA
.

Note that many systems of the form (5) are generically submersive,
since this is a necessary condition for accessibility.

For the system (5) we define in a natural way

y(0) =h*(xo, u(0)):=Eo(x0,u(0)), .
(1)=h*(f(xo,u(0)),u(1)) :=El(xO, u(0), и(1)),

y(@)=h*(f(...[(F(xo, w(0)),u(1)),...),u(t)):=
=8 (XO, u(0),...,u(t)). -

Note that y(0), y(1), y(2),...,y(¢f) so defined have components in

the fieldX .
« Let & denote the vector space over Х spanned by {dx,du(o),...,
du(n)}. Observe that dy;(k) & 6 for all 1 <i<<p and o<<k<Cn, since

k m Õy,(k)
du(l)

n dyz(k)
dxj+ 2 Z W jdyi(k)=.š ———Õx,-
2

Define a chain of subspaces 6, 61 <=
...

=6, of & by
6r:= spany {dx, dy(o),...,dy(k)}.

Definition 2 [5-I°]. The delay order @; corresponding ю е йй
(i=1,..,p) output y; of (5) is defined as the smallest nonnegative
integer k for which

dyi(k) & spang {dx}.

If such a k does not exist, one sets d;=oo.
Definition 3 ['*]. The essential order e; corresponding to the ith

(i=1,....p) output y; of (5) is defined as the smallesi nonnegative
integer k for which

dyi(k) & spanX{dx, dy(o),...,dy(k— 1), dyjwi(k), dy(k+l),
..., dy(n)}.

If such a k does not exist, one sets e;=oo. :
Lemma 1 ['3]. The essential orders e;, i=1,...,p cannot decrease

under the action of a static or dynamic compensator.
Lemma 2 [!°]. Consider a right invertible nonlinear system (1) @йй

equal number of inputs and outputs. Then for all I<<i<m
(i) &, di<oo,
(ll) e,';d,—,
(iii) e;=d; if and only if the input-output decoupling problem around

the equilibrium point (x° u®) is locally solvable via a regular static

state feedback.
Lemma 3 [®2]. Suppose that (5) is submersive and that chc

c...c1y,c{1,...,p} are index sets such that for O<k<n B.=

== ssрапу, {ах, ау (0), ..

~
ау (&) |!, © 1,, o<<j<<k}. Moreover, suppose

that I. does not equal {1,...,p}, i.e. there exists j{1,...,p} such

that j & In. Then for each j&& 1.. I<<j<<p, exists an integer N, I<N<n
such that |



dy;(N) = spany {dy;(o),...,dy;(N—l), dy:(o),...,dyi(n)|

ire I, o<<k<N}

and

dy;(k) &spany{dy;(0),...,dy;(N—1),dy.(0),...,dy.(k)|

ise I, for o<<s<<N and is € I, for s>N},
N+l<k<N4r, r=l.

4. INVERSION ALGORITHM

In this section, for completeness, we recall an inversion algorithm
for discrete-time nonlinear systems [**] in a form [*], and some of its

properties that will be employed in the sequel. Denote yo(f)=h(x({))
апа оо==o.

Step 1. Calculate y(f+l)=h(f(x(¢),u(t))), and define

д
Оі—гапк Ы_ h(f (х9 u))

l х==х', u=u’

Let us assume that g,=const in some neighbourhood O; of (x° «°).
Permute, if necessary, the components of the output so that the first g
rows of the matrix oh(f(x, u))/0u are linearly independent. Decompose
y(t+l) and A(f(x, u)) according to

st+l)=| PCFD Te B 0

pi (t+l) a(x,u)|
where 7,(¢+l) and @, (x, u) consist of the first o, components of y({4l)
апа h(f(x, u)), respectively. Since the last p— o; rows of the matrix

Oh(f(x,u))/0u are linearly dependent on the first o, rows, we can

write

j 1 (t+l) =õi(x(6), ü(8)),
:

yn (i+l) =ai(x(6), u (t)) =yl(x(2), 31(2+1))
Denote ä;(x,u) by Ai(x, u).

Step k+l (k=l). Suppose that in Steps 1 through k&, 7i(¢+l),

Jo(t+2),...,se(t+k), ye(t+4+k) have been defined so that

Fi(t4l) =ar(x(t), u(?)),

G(t42 =az(x(t), u(t), §1(1+2)),

(k)= (x(0), (), Gelt+),I<ih—l, i+l<j<<k}),

4(t+k)= (x(1), {5: (t+]), I<i<k, i<j<k}).

д д
y —Д, —— [АТ ST 1TSuppose also that the matrix =Ay 5 [27...ä7]" has full rank

equal to g« in some neighbourhood Ok of (X9, u?).
Compute

yr(t+k+l) =2yx(f(x(t), ü(t)), (7:(1+j+1), I)IZk, I<jJZTk))=
=ar+s(x(),u(t), {7:(t4)), I<i<k, i+l<j<<k+l})

312
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and define

=rank-i[Ak(.) ]Ok+l
ди аіг+l(') х=хo‚ u=uo, y=yo=h(xo)

Let us assume that ge+l=const in some neighbourhood Oy of (X9 u?).
Permute, if necessary, the components of ye({+%k+4l) so that the first

or+l rows of the matrix d[A%,a}, ]"/0u are linearly independent. De-

compose &k(t-l—k-l—l) and ap4+q according to

i — Чн+l(l+/г+l) = а— !Ё'дн
|Yr(t+k+l) [ka (t4+k+l) k+l

А ы

where §r+l(t+k+l) and d@e+y consist of the first gr+l—@r components

of yr(i4+k+l) апй ах respectively. Since the last p — ok4l rows of the

matrix d[A},a] ]1"/0u are linearly dependent on the first Qz+l rows,

we can write

Ji(t+l)=ax(x(t),u(f)),

Jrri(t+k+l) =2õri(x(l), ü(t), (7(1+)]), I<i<k, i+l<j<k+l}),

§k+l(t+k+l)=\bk+l(x(t), {J:(1+)), I<isk4l, i<j<k+l}).

Denote Ap+l= [ATk, &;H]T.- End of step k+l.

Note that we can apply the inversion algorithm not necessarily in a

unique way. There exist, in general, different permutations of output

components yr({+k+l) at step k+l, =O, so that the first ge+s rows

of the matrix d[A7,a},]"/0u are linearly independent. Different per-

mutations of output components, that is, different selections of

Jr+l(t4+k+l) in each step result in different functions Ap4i(°); see

['6] for a relation between such diiferent selections.

In the inversion algorithm certain constant rank conditions have been

imposed to ensure that the algorithm can be carried out on system (1)
locally around an equilibrium point. We shall summarize these conditions

in the -definition of regularity of an equilibrium point.

Definition 4. We call the equilibrium point (x° u®) of the system
(1) regular with respect 10 the inversion algorithm if in ‘case of some

specific application о the inversion algorithm [oг all k=l,
rank oAx(*)/0u is constant in some neighbourhood о (x° u®). We

call (x° y°) strongly regular if above holds for each application of the

algorithm.
It has been shown that around a regular equilibrium point the inver-

sion algorithm terminates in at most n steps [!7].
From the following lemma, proved by Grizzle ['?], it is evident that

around a regular equilibrium point the inversion algorithm defines the
basis for vector spaces 6, I<<k<n.

Lemma 4. Apply the inversion algorithm to submersive nonlinear
system (1). Then for each I<<k<<n

(i) {dx, {dj:(j)| I<<i<k, i<<j<<k}} is a basis for 6k.

(ii) dimxék=n+gi+ r +9k'
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Though the result of the inversion algorithm is not unique, it has
been proved ['®] that the integers gi,...,0r do not depend on the par-

ticular permutation of the components of y.(¢+#£-+1). Thus, using this

algorithm around a strongly regular equilibrium point we obtain a

uniquely defined sequence о integers Ü<01...ZUT... €
<min (p, m). Leto*=max{or, =l} and let a be defined as the smal-
lest k= N such that gn=io*. Оп the analogy with Moog ['®], the

or's arecalled the invertibility indices of the system (1).

| 5. INPUT-OUTPUT DECOUPLING COMPENSATOR

In this section we shall show that using.the inversion algor'ithm, we

can, for locally right invertible systems, construct a regular dynamic
compensator that will locally solve the input-output decoupling problem.
Note that right invertibility is necessary and sufficient condition for the

solvability of a input-output decoupling problem [!°].
Suppose that a system (1) is locally right invertible around the

regular equilibrium point. This means that applying the inversion algo-
rithm to (1) we obtain, at the ath step,

gr(t4l) =ay(x(t), u(t)),

Jo(t+l)=daz(x(t), u(t), g 1 (t+2)), (6)

o (t+a) =du(x(t), u(t), {7:(t+)), I<i<a—l, i+l<j<a}),

where the Jacobian matrix of the right-hand side of (6) with respect to

u around the equilibrium point has a full row rank ga==p. For i=1,...,p,
denote by t+vy: the smallest time instant and by {-+-ё; the greatest time
instant in which the ith scalar component y; of the output y appears in
(6), and rewrite (6) as . . .

[ Yor_+l (t+k) ] :
d = (x(1), ult), (yi(t+j), IZl<ors - o A7)

IYo (t-i-k) ] vi+lj<min(k, õi))),

k=1,...,a. |
After a possible permutation of inputs we may assume that the Jacob-

ian matrix of the right-hand side of (7) with respect to u!'=(u, ...,up)"
around the equilibrium point has-a full row rank p. Moreover, at

the equilibrium point the value of the vector function @.(:) is equal
Ю(н ‚...,у°рк)т. - ВЕ . |

Therefore, Eq. (7) сап be solved for «'(f). uniquely around

the equilibrium point by applying Implicit Function Theorem. Define
u?= (up+l, ..., Um)T. Then, from (7), we obtain

w() =@(x(t), {y:(1)), I<i<p, vi<[<<oi}, u*(1)) (8)

which is such that for =l2, ...,«a

(Yo t 1 (4R, . . ~ Yo (t+k) "=k (x(1), @(x(), {yi(l+)), ISi<<¢",

_
-

. | (9)

Vit I<<G<<oi), w 2 (1)), {yi(t4)), I<i<<or—, yitHl<<j<min(k, 8:}).

Notice that ¢ : M;—M, is defined for some (possible small) neighbour-
hoods M; and M, of (x%4°...,%%u?) in XX(Y°)*XU* апа о!
ulo in UIO. : | . `
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Now construct the compensator for (1) in the following way. Let

zi=(2il, .., 2i, =), i=1,...,p be a vector of dimension &i— vyi,

v? 2 — a vector of dimension m —p, and consider the system |

Z,l(t+l)=2i?(t)’ ;

ži õ (t+l) =zi õvlt), i=1,...,p, KL (10)
2i, 0w (1) =0i(?), r SN

ui(t)zq)(x(t)a{Zij(t), lšjgõi—vi,vi(t), lšlšp),vz(t—)),

w 2 (t) =v2(t) |

with controls o'(t) = (vy,...,0p)" and v% outputs и! ап@ и?.

"Moreover, in accordance with (8) and (10) define 2°=y¢°, i=1,..., p

plo=lfo © == 1, . | |
Denote the dimension of the compensator (10) obtained via the ap-

plication of the inversion algorithm in one specific way, by o. Then ob-

p .

viously o= 3 (8;—vi). ) '
=1

It has been shown in ['7] that the compensator (10) is regular on a

neighbourhood of an equilibrium point. `
Now, it is easy to see that the compensator (10) with an arbitrary

initial state, applied to (1) yields locally around the equilibrium point
for i=]1,...,p

yi(Yi+j—l)'=zij(o), i=l,--—aõi—Yi, ОЛ

yi(t46:) =vi(t), O<I<IF
1 (11)

Moreover, the inspection of the inversion algorithm gives that for

the compensated system (1), (10) we have that y:(o),...,yi(vi—l),
i=1,...,p depend only on xo, and are therefore independent of the new

controls. Hence any compensator (10) obtained via the inversion algo-

rithm, solves the input-output decoupling problem locally around the
strongly regular equilibrium point (х°, «°). .

6. MINIMALITY OF DYNAMIC INPUT-OUTPUT DECOUPLING

COMPENSATOR

In this section we shall prove that the decoupling compensator (10)
which is actually a discrete-time counterpart of the so-called Singh
compensator is of minimal order. The proof is quite a straightforward
generalization of a proof for continuous-time systems and consists of

two parts. We first prove that any decoupling compensator obtained via

the inversion algorithm has the same dimension o around a strongly
regular equilibrium point. Then we prove that for any dynamic
decoupling feedback of the form (2) with a p-dimensional state space we

have that p=>o.
For this we need the following Definition and Lemma.

Definition 5 [!°]. Let Vbe a given vector space over a field 5. Let

A={hy,
...,

} be a family of vectors in V. Then-); is called an essen-

tial vector of A if

5В @4, .. ~ Ои-1, ОН,. ‚,@, © Т:Х;== 2(l,'7\‚‚'.
jAI
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The above definition means that an essential vector of A is linearly
independent of all other vectors of A. This implies that every subset of
A that forms a basis of span {A,...,A,} necessarily contains the essen-

tial vectors of A.

Lemma 5 ['']. Let V be a given vector space over a field F. Let
A={M,

...,
A} be a family of vectors in V. Let s:=dim span{A,..., A}

апа assume that {h,...,As} 5 а set of linearly independent vectors.

_Т/ъеп+?„l‚-‚ i=1,...,5, is an essential vector of A if and only if for all
j=s+l,...,r

7\.j= Z Ajk M — a„=o.
k=l

In general, we can apply the inversion algorithm to (1) in several
specific ways. We prove the following Lemma.

Lemma 6. Any decoupling compensator (10), obtained via the

inversion algorithm, has the following properties
(1) õi=e;, i=1,...,p,

where by e; are denoted the essential orders о the system.
14 o

(11) Ä'Yi=kz;ksk,
where Sk:=ok—ok-1 1,..., @.

Remark 2. From (11) and Lemma 6 it is not difficult to see that for

any decoupling compensator (10) obtained via the inversion algorithm
the essential ordersiare not increased. |

Proof (i). By definition of essential orders and by Lemma 4 we have
that dy;(k) is not an essential vector of 8 for k=1,...,e;— 1. This

implies by Lemma 5 that

OYe—l (i —1)

ду‚-(е‚- —l)
ЭЬО

апа, Пепсе, 6;»е;.
Moreover, by a definition of the essential orders and essential vectors

а5 well as Lemma 4 we have that dyi(e:;) is an essen'tiial vector of &«

for k=e;,...,n. Again, by Lemma 5, this implies that dyx(k)/0y:(r)=0
for k=e¢i,...,n and r=e,;,...,n. This means that 8;<e;. Hence õ:=ei.

(ii) Note that y; is the smallest k' N for which y; is an entry of

jr. Inspection of the inversion algorithm gives that the set {y; | i< {1,...
...,P},yi=R} has sp=qr—or—l elements. Therefore

p o

2/ vi= 2ks
i=l k=l

The consequence of Lemma 6 is that around a strongly regular equi-
librium point (x°, «°) any decoupling compensator obtained via the inver-

sion algorithm, has the same dimension

p @&

o= 3ei— №) №5,
i=l k=l

Our main result can be stated as follows.

Theorem. Consider the submersive nonlinear system (1) around a

strongly regular equilibirium point (x°, u®), and consider a regular dynamic
state feedback (2) around the equilibrium point (2° x°, v° u°) correspond-
ing to (x° u®). Assume that the compensator (2) of dimension p solves
the input-output decoupling problem locally around (2° x°, v° u®). Then
n=o.
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Proof. Consider a regular dynamic state-feedback C described by
equations (2) that solves the input-output decoupling problem locally
around (2% x% v° 4%, Then, by Lemmas 1 and 2, we have

ei(PDC)=di(P°C)>Bi(P)7 i=l,.-.,p.

It is known [%°] that for closed-loop system P-C described by (4) the
differentials dy”°¢(k), i=1,...,p, k=o,...,di(P- C)—l are linearly

independent (over 5€P°C, the subfield of X’°¢ consisting of the mero-

morphic functions of x and 2). By Lemmas 4 and 6 we сап Ипа а

reordering of the outputs of (1) апа integers yi,...,y, satisiying
р Р

D'vi= 3 ei— o such that for (1) the differentials
i=l {=={

{сіх, {dyl(])’ I<i<<p, yvsSji<<ei— l}}

are linearely independent over JX. Assume that for closed-loop system
P- C described by Eq. (4) these differentials are not linearly indepen-
dent over X”°¢ Note that for the closed-loop system (4) these diffe-
rentials can be expressed in the form

j

s. yi(j)
P

(12)=2 анн 32D due)ау ° ©(]) =

=
&

where du(s) depends on (x,2). Linear dependence over J?°¢ implies

that there exist i, i=1,...,p, В== ур ..., 6; — 1 and ¢ in KP OL (not
all identically zero) such that

p е:—l

Yodx+ 2 2) Wirdy"° (k) =O. (13)
i=l k=

Combining (12) and (13) we obtain

eii —ki ду; (&)
s) =0

p ei Oy:(k)
d

$

> Z\pik—a——du( —(ot 27 sъа))акo sV (14)i=l k=

The invertibility of the plant (1) implies that there must be at least one

du;(j) that appears in the left-hand side of (14). Choose r = {1,..., m},
s & N such that 4и,($) will appear on the left-hand side of (14), and s

will be as large as possible, Then, from (14), it follows taht we can find

a function ®,,(*) such that

u'(s) =ф'B(х› {иі(і)› i:)fir' o<]<S}, {иг(і)‚ o<]<S— l}) (15)

By Lemma 3 this means that for all k&>s there exists a function

O, (x, {wi()), isr, o<j<h}, {u,(j), o<j<s—l}) |
such that

ur(R) =D (x, {ui(j), is=r, 0 i<k}, {u(j), o<j<<s—l}). (16)

This implies that, applying the inversion algorithm to (3), we obtain

On+u m which means that the compensator (2) is not a regular dyna-
mic state feedback and it gives a contradiction. Hence, for the system
(4) the differentials {dx, {dy:(j), I<<i<p, yi<j<<ei— I}} are linearely

independent over XP°C. In particular this implies that
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: дх 91

git ° 1
ЮПКЁ(‚Р ос [ ‚ ду: (1) Õyi (j) ,

ox 0z i=l, ..,p, N<i<ei—l

p

=n+2 (&—vi) =n+to

and hence we must necessarily have that

Õy,(]) ) —

P

—v)=o.rankj—gp ос
(

0z =l, ...,P,D/ і=2l (& —vi)

Obviously,

к, () dim
ran s{)’3 ос 0z i=l, ..,p,ugji<e—l

S dimz=p

and so p=oo, which establishes our claim.

. ACKNOWLEDGEMENT

The author would like to thank Henri Huijberts for discussing the

topic of this paper. _

REFERENCES

1. Descusse, J., Moog, C. H. Int. J. Control, 1985, 42, 1387—1398.

2. Descusse, J.,, Moog, C. H. Systems and Control Letters, 1987, 8, 345—349.

3. Li, C.-W., Feng, Y.-K. Int. J. Control, 1987, 45, 1147—1160. N
4. Nijmeijer, H., Respondek, W. lEEE Trans. Autom. Control, 1988, 33; 1065—1070.

5. Singh, S. N. lEEE Trans. Autom. Control, 1980, 25, 1237—1239.

6. Singh, S. N. lEEE Proc., Pt. D, 1981, 128, 157—160. . e
7. Xia, X.-H., Gao, W.-B. A Minimal Order Compensator for Decoupling a Nonlinear

System.—Prep. of Beijing Univ. of Aeronautics and Astronautics, 1989.

8. Monaco, S., Normand-Cyrot, D., Isola, T. Prep. of IFAC. Symp. on Nonlinear

. Control Systems Design. Italy, Capri, 1989, 48—55. .
9. Nijmeijer, H. IMA J. of Mathematical Control and Information, 1987, 4, 237—250.

10. Nijmeijer, H. University of Twente, Faculty of Applied Mathematics. Memorandum

No 770, 1989.

11. Huijberts, H., Nijmeijer, H., van der Wegen, L. Systems and Control Letters,

1992, 18, 435—443. _

12. Grizzle, J. W. A Linear Algebraic Framework for the Analysis of Discrete-time

Nonlinear Systems. Report of the Dept. of Electrical Eng. and Comp. Sci,
Univ. of Michigan, Ann. Arbor, 1991.

13. Kotta, U. Proc. Estonian Acad. Sci. Phys. Math, 1993, 42, 3, 229—235.

14. Glumineau, A., Moog, C. H. Int. J. Control, 1989, 50, 1825—1834.

15. Kotta, U. Int. J. Control, 1990, 51, I—9.

16. Kotta, U, Nijmeijer, H. Proc. Acad. Sci. of USSR. Technical Cybernetics, 1991,

52—59. `
17. Kotta, U. Proc. Estonian Acad. Sci. Phys. Math., 1992, 41, 14—22.

18. Moog, C. Math. Contr. Sign. Syst., 1988, 1, 257—268.

19. Cremer, M. Int. J. Control, 1971, 14, 1089—1103.



319

DISKREETSE AJAGA MITTELINEAARSETE SUSTEEMIDE

DEKOMPONEERIMINE MINIMAALSET JARKU DUNAAMILISE

OLEKUTAGASISIDE ABIL

Ulle KOTTA

On vaadeldud diskreetsete mittelineaarsete siisteemide klassi jaoks
sisend—valjund-kujutise dekomponeerimise i{ilesannet. Siisteemi tasa-

kaalupunkti {imbruses on otsitud 'diinaamilise olekutagasisidekujulist
lokaalset ‘lahendit. Otsitav kompensaator (tagasiside) on leitud poora-
misalgoritmi abil ja ndidatud, et saadud, kompensaatori jirk on viikseim
voimalikest.

РАСЩЕПЛЕНИЕ НЕЛИНЕЙНЫХ СИСТЕМ С ДИСКРЕТНЫМ
ВРЕМЕНЕМ С ПОМОЩЪЮ МИНИМАЛЬНОГО ПОРЯДКА
ДИНАМИЧЕСКОЙ ОБРАТНОЙ СВЯЗИ ПО СОСТОЯНИЮ

Юлле КОТТА

Решена задача расщепления вход—-выходного отображения нелиней-
ной системы с дискретным временем. Локальное решение в виде дина-
мической обратной связи по состоянию найдено в окрестности точки

равновесия системы. Искомый компенсатор (обратная связь) определен
с помощью алгоритма обращения. Показано, что из всех компенсаторов,
решающих рассматриваемую задачу, найденный имеет минимальную
размерность.
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