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Abstract. A necessary and sufficient condition for multipliers of generalized Lipschitz
classes in certain Banach spaces is obtained. The majorant of the modulus of continuity
is supposed to be slowly decreasing. For the one-dimensional periodic case the result

was known earlier.
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1. Introduction

The purpose of this paper is to extend some results concerning multi-

pliers that preserve the modulus of continuity of integrable functions to
the setting of abstract Fourier expansions in Banach spaces.

Let L be the space of 2m-periodic integrable functions f with the
norim

1 л

=-— dеер F IH ät

and let A and B < L be any subsets. Let

f~3 fkens (1.1)

be the Fourier series of f. The classical problem of multipliers asks for

properties that an arbitrary sequence of complex numbers A= {Ax}
should satisfy to ensure that f &A always implies that the series

kš„ Aef (k) it (1.2)

is a Fourier series of a function f, & B. In that case we say that A is

a multiplier from A 4 to B. If A=B we say that A is a multiplier of A.

The answers to our problem we shall search in terms of the behaviour
of the means of the series

k—š Äkeikx,
:

(1.3)
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Let w(8) be an abstract modulus of continuity, that is, w(8) is nofi-

decreasing, ©(0)=0 and o (8§;+98)<o(d:)+0(d2). Let Lip(w; L) denote

the set of all integrable functions for the moduli of continuity of which

we have the estimate @ ({, 6) „==О (о (6)), where

o(f,8)=") Ižlugõllf(x+h)-—f(x)llL.
In the case ©(8)=06% (o<<a<<l) the problem of multipliers о!

Lip(w; C) was solved by A. Zygmund in 1959 [']. He proved that the

integrated kernel of the multiplier

ооы (1.4)2 ik
е

k%O

should belong to the Zygmund class in integral metrics L.. Later this

result was extended to more general classes of moduli of continuity and

different metrics. An important development was the characterization

of the properties of the modulus of continuity via suitably defined

sequences (see |[[2]). Namely, with a given ®(d) let us associate a

sequence D(w)={or} defined by induction

бо== л, - .

(6) dw (6%) =__l_ 1.5)6k+l=min{6:max(%(6:j—, W) 2} ‚ (

The latest result in this direction was (see [%], also [*°]).

Theorem А. Let D(w)={6r} be defined by (1.5) апа let np=[l/8:].
Then а sufficient condition for A= {A\x} to be a multiplier of Lip(w; L) is

NvneA — VmAlli= 0(1) (& — со). (1.6)

If w(8) is slowly decreasing, then this condition is also necessary.
Here v,A denotes the n, 2n Vallée Poussin means of the series (1.3)

(snA is the symmetrical partial sum of (1.3))

vnA="’l—l"(SnA+Sn+iA+ . @t +S2n—iA)

In the present paper we intend to give an equivalent of Theorem A

in the setting of abstract Banach spaces. In doing that we follow the
ideas of the Aachen school [®7]. _

Section 2 is devoted to the exposition of the concept of biorthogonal

expansions in Banach spaces. For details we refer to [*7] and the

literature cited there. In Section 3 we prove the main result of this paper

and Section 4 is devoted to discussion and possible further applications.

2. ADMISSIBLE BANACH SPACES

Let Z be the set of all integers, C the set of complex numbers, and

for some natural number N let Z¥ denote the N-fold Cartesian:product
of Z. Let [a] denote the integer part of a real number o and |k| the

Educlidean norm of a multiindex k. ol w
Let X and Y be complex Banach spaces with the norm |-llx and

dual X*. Then [X, Y] denotes the set of all bounded linear operators of

X into Y. We shall write [X] for [X, X].
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For an arbitrary Hilbert space H with inner product (-,-) let
{fr;R= Z~} be an orthonormal sequence with respect to that inner pro-
duct. Let

N=l({f¢}) = {PEH;P=M§O arfr, ar €С}
be the set of polynomials generated by {fx}, and

Пр— {={p €H,
‚ р== lkšpakfk, akEC}

be the subset of polynomials of (radial) degree of o.

Let the pair H, {fx} be fixed. The Banach spaces we shall study will

be constructed via the following procedure.-
A Banach space is called admissible (with respect to the given ortho-

normal structure H, {f.}) if |

{fe} =X, and II is dense in X,

| (p, fe) |<Aelpllx (р ЕП, & е 7*)

{f*} is total on X.

Неге f*& X* denotes the unique bounded linear extension of the func-

tional that is generatedby fx via j* (p)=(p,f») on lIcX. The se-

quence {f*} is said to be total on X Г () ==o for all ke ZY and

some [ & X necessarily implies f==o.
Let s be the set of sequences A={\y; & © Z"} of complex numbers.

Let X and Y be admissible. A sequence A&s is called a multiplier of
the type (X, Y) if to each f = X there corresponds an f, & Y such that

Р, ()= Г, () (® Е 2*).

The set of all multipliers of the type (X, Y) is denoted by M(X,Y). We

also use the notation M(X)=M(X, X). . |
With each A= M(X,Y) we may associate the multiplier operator

A e [X,Y] with Af=fa. The set of all multiplier operators is denoted

by [4X, Y]m. With the natural vector operations M(X,Y) becomes a

Banach space in respect to the operator norm

||M|M(X,Y)= sup ||fx||y=||A||[x,yl.
Ifllx=l

With any element f of an admissible Banach space we may associate
its Fourier expansion

f~ ® ВОЬ
>

2.)

The (radial) partial sums of (2.1) are defined by

Sof= 2К; (О (ГеХ, о2>o)
|k <p

апа е Riesz means of the order a=o by

(R, a)of= X ra(|k]/Q)[% (D],

where

— [

(I—o%, Н 0]
га() == [(1 t)+]°‘—{0, ИО г=l.



We say that an admissible Banach space is regular if there exists

some a=o such that

Iга ( | # /оЙмх == Со, (2.2)

the constant C, being independent of ¢=o.
For our approach it is essential that in regular spaces we can use

the Vallée Poussin means. Let 0(f) be an arbitrarily often differentiable
function satisfying 0<<0(f) <l,

9(t)={ 1, f O<//<LI

0, # г>2.

The Vallée Poussin means of (2.1) are defined by (vof=o)

о!— 3 o(|k|/o)f% (N (=X, 0=0). (2.3)

By E,(f; X) we denote the best approximation of f & X by polynomials
of the degree =O,

Eo(f; X)= inf {llf—pllx: p=ll,}.

The following lemma summarizes some well-known properties of the
Vallée Poussin means in the present setting. ‚

Lemma 1 (see [7]). For an admissible Banach space X let (2.2) be

satisfied for some a=o. Then the means (2.3) possess the properties

(1) о% €Np c HNX for each f<X;

(ii) vop=p [ог each p < ll;

2

(i) lodfllx<Da / аан | оче ()|ае
0

the constant D, being independent of |= X and ¢=o;

(iv) lvof — Fllx << CEo(f; X),

the constant C being independent of [ = X, 9¢=o.

Next we introduce the generalized Lipschitz classes via the Peetre’s
K-functional. This is a well-known way to use some measure of smooth-

ness in abstract spaces. The K-functional is defined for [©Е X, and

t=o by

K(X, Z; f t) = inf (If —gllx+t(g]2), (2.4)

where Z — X is a subspace with the seminorm |-|z. In many cases (2.4)
is equivalent to some standard modulus of continuity, For a given modu-

lus of continuity е () ме define the generalized Lipschitz class

Lip(o,X)={f=X; K(X,Z;[,t)=0(o()), t—o-+}.

We also need two inequalities connecting the best approximations to the

properties of smoothness. These are the so-called Jackson-type inequality
(A=l)

Eo(g: X)<(A/0)|gl: (g=2) (2.5)

and a Bernstein-type inequality

303
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Рр I Z<’Q"PO"X (ро Е П,), (2.6)

where we suppose that 1 = Z < X.
As to the modulus of continuity, we exclude the class Lip(B) sup

posing that

supоо (2.7)
t>o

t

3. MAIN THEOREM

Suppose that the seminorm |-|z and the multiplier operator are

connected by the condition

|Ap| <Almexy|plz (pETI). (3.1)

Also we say that w(#) is slowly decreasing if

o(?)
e (t— 0++).

Then we have ;

Theorem 1. Let X be regular and suppose that the Jackson-type and
the Bernstein-type inegualities (2.5) and (2.6) and (3.1) are satisfied.
Let w(t) be slowly decreasing and let the seguence D(0)=fõ;) be

defined by (1.5). Let 0o;=1/8;. Then a necessary and sufficient condition

for a sequence ) stobe a multiplier of Lip(w, X) is that

"Шр‚„А—Ор;А"м(х)=О(l) (j—o). (3.2)

Proof:

Sufficiency: Suppose (3.2) holds. Let f< Lip(w, X). Consider the de-

composition (vef=o)

j= ;' {vord — vorf). (3.3)

As v, is a bounded linear operator from X into 11, we have A(vof)=
=op[3. Thus in view of part (iv) of Lemma 1 we have

ZllA{Upmf— Upif} I|x<2|l {vp/nA_ UDIA} {vzpmf — Upl/2f} "x
] /

= O( 2 ор^ — ОрА|м(х)Ё ру/2 (f: X) )
i

= O( 2 ”UpmA — Up/A“M(X)'ü) (Öi) )
/

=0 ( 2…‹6‚-)). | (3.4)
i

In view of (1.5) the last series converges. Hence this series corretly
defines an element [, X.

Next we have to demonstrate that f, is an element of Lip(w, X). Let
us estimate the corresponding K-functional. We need the basic property
of the sequences D(w): they are maximal w-lacunary sequences in the

following sense.
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Lemma 2 (see [2]). Let w(d) satisfy (2.7) апа let the sequence
D(w)={6;} be defined by (1.5). Then

(i) 6i+/6<l/4 (j=o, 1, ...);

(i) (1/¢)0 (8) <3 o (&) min (1, 8/8) <cw(d) (6>o)

As vpofaesll, < Z, we have for õi <lZ<ö

K(X, Z; f t) = ;22 (И — gllx+2|2]|z)

š"fk — 09…{1"){"'„“9…“'2- (35)

Using the decomposition (3.3) we obtain, as we did in (3.4), the stan-
dard estimate for the first term in (3.5):

la— оаа—0( Z о() ). (3.6)
у==Н

As to the second term, we apply (3.1) to a similar decomposition. Hence
by Lemma 1

{

Цир…ія‚|2=і l 2‘; {vpluil_ vplfh} l
zj=

{

<!Ä) | {UpmA — vp/A} {Uzpmf — Up//2f} |Z
l'—'——

!

< —išo' "vp'“A UDIA”M(X)“U.‘zm.j —O2х

!

=0(š ® (6,) ) (3 1)

Combining (3.6) and (3.7) with Lemma 2 and (3.5) we get the final

estimate

K(X,Z; 2, t)=0(w(t)).

Thus we have proved the sufficiency part of the theorem.

Necessity: To prove this part we use the following

Proposition 1 (see [7]). Let X be regular апа o be such that (2.7)
holds true. Suppose that the Bernstein-type inequality (2.6) is satisfied.
If {o;} is a sequence of positive numbers monotonically increasing to

infinity such that

,-;Z_{f o (0;) /o; wo (01) /01,

о (о:) << (1/2)о (о:-1),

then the element

)==
S

;šohl' й, == @ (1/0:) Op,

belongs to Lip(w,X) for any o, 1l with о!х<В.
Observe that # D(w) is defined by (1.5) and o;=1/8;, then in view

of Lemma 2 the sequence {g;} satisfies the conditions of Proposition 1.
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Suppose (3.2) does not hold. Then there exists a sequence of indices
{j(l)} such that

"Up/(xmA — Up/(:)A"M(X)> L (l>00). (3-8)

In the following we shall write / Юг j(/). Let e=o be fixed. For every

{ IеЁ ор., be an element of X with |lwp..lx<<l such that

Il (vor, A— v A) =
p! P -)(Dpu.”x | uällšl Il (Up;..A‘— Up/A)f"X — &

— "Up/..A — UDIA"M(X) — €. (3-9)

Since the supports of the operators vy, A—vgA are by definition con-

centrated on Ilay, \IIp, we may also suppose that wg.,€ zp, \lp;. Apply
Proposition 1 to the sum `

о== j i |lšo, h], Wlth hj=(l)(Õj+l)(l)p;„.

We get that o = Lip(o, X).
Next letus consider the difference vg.,wa—vpoa. 1Ё о; is tobe in

Lip (0, X) we should have by part (iv) of Lemma 1

lVpruida — Vporllx<2E(g (wa; Х) ==О{о (6/))

On the other hand, we have by (3.8) ant (3.9) (taking into account that
@ (1) is slowly decreasing, thus (8;j+1)==(1/2)о(ё;) )

9р„л — vgoallx=|| {UpmA — UA} hjllx

=(8;+1) (lvpr.A— VoAllmix) — €)

>(6,) 1550 ((6,)).

This contradiction proves the theorem.

4. DISCUSSION |

First of all we would like to note that the proof of Theorem 1 is
actually simpler in this abstract setting than it was in the one-dimension-
al periodic case. This is mainly due to the definition of the modulus of

continuity directly via approximations rather than via the norms of the
first differences. So we can skip some seguels of the proofs. On the other
hand, this work is now incorporated into condition (3.1), which in the
classical case is superfluous.

The present approach in addition to the well-known one-dimensional

periodic case also covers the radial multivariate periodic case. As to

possible further applications we would like to point to Jacobi expansions
with suitably defined shift operators and also Legendre expansions, but
we postpone detailedinvestigations in these directions to later dates.
The main problem arising in this context is the interpretation of condi-
tion (3.1) and its implications in these settings.
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ORTOGONAALSETE ARENDUSTE MULTIPLIKAATORID BANACHI

RUUMIDES

Jiiri LIPPUS

On leitud tarvilikud ja piisavad tingimused Fourier’ multiplikaatori-
tele iildistatud Lipschitzi klassidel teatavate regulaarsuse omadustega
Banachi ruumides. Uhemddtmelise perioodilise juhu puhul olid tulemu-
sed varem teada.

МУЛЬТИПЛИКАТОРЫ ОРТОГОНАЛЬНЫХ РАЗЛОЖЕНИЙ В

НЕКОТОРЫХ БАНАХОВЫХ ПРОСТАНСТВАХ

Юри ЛИППУС

Находятся необходимые и достаточные условия для мультипликато-

ров обобщенных классов Липшица в определенном смысле регулярных
банаховых пространствах. Для одномерного периодического случая эти

условия были известны ранее.
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