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Abstract. We present a normalization proof for the second order arithmetic with

arithmetical comprehension and Hilbert’s epsilon-axiom F[T]—F[eXFX] which repre-

sents a kind of choice principle. The proof is carried out by transfinite induction

ир 10 .
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INTRODUCTION

Since the existence of a normal form for the second order classical

logic with the axiom of choice was proved in [!'] there has been no

progress in establishing a normalization theorem for that theory or even

in finding a promising set of reductions. It became possible to look at

this problem from another point of view after it was noted 1п [?] that the

(0,1)-Axiom of Choice is derivable in Hilbert’s epsilon-calculus (the
derivation in fact is contained т [%], pp. 467—469). This gave an oppor-
tunity to apply normalization techniques to systems with epsilon-symbol,
developed, for instance, in [%], [*] and [®] for normalizing theories with
various kinds of the axiom of choice (AC),.

Analysis of the derivation of AC in [3] shows that in the presence of

quantifiers only epsilon-terms of a special kind are needed for deriving
AC: we can assume that epsilon-terms do not contain secnod order
variables bound by exterior quantifiers or epsilon-symbols (though they
may contain second order variables bound inside them). This restriction

allows to avoid the problems connected with the absence of a notion of
rank in the second order logic and can be kept under some reasonable

sequence of reductions [6].
In this paper we examine the sequence of reductions [¢] for a weak

subsystem of analysis, second order arithmetic with arithmetical com-

prehension and corresponding choise principle FT — F[eXFX] with
arithmetical 7, and prove its convergence by induction up to &. Note
that, as it follows from [7], one cannot add an unrestricted axiom of
choice to weak predicative subsystemswithout .inereasing the proof-
theoretical strength of the theory. В
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By arithmetical analysis AA we mean the second order arithmetic
with arithmetical comprehension (without parameters). As it is noted
in [7], this system is conservative over Peano Arithmetic. By arithmetical
analysis with epsilon-symbol AAe we mean the following extension of
AA:

(1) an additional item in the definition of terms and formulas is
allowed: if FA is a formula and A does not occur in the scope of any
epsilon-symbol of FA then eXFX is a 1-term (predicator);

(2) second order quantification is restricted with respect to epsilon-
symbol: if FA is a formula and A does not occur in the scope of any
epsilon-symbol in FA then HXFX and VXFX are formulas;

(3) we have additional axioms FT — F[eXFX] for T being arithmetic
lambda-terms. _

‚

We provide the embedding of AAe into its w-version AAwe, where

positive occurences of first order quantifiers are introduced by ©-

rules and Hilbert’s epsilon-axiom is taken in the form of epsilon-rule

I'>0, FT F[eXFX],>O6
— ¢,

Г — @

and normalization of AAwe. Two types of reductions are developed. One
is standard cutelimination as presented т [B], [°] (see Lemma 4.1,
Theorem 4.2 of this paper). Another type of reductions is elimination
of epsilon-rules in a way similar to [°] (Lemma 4.3, Theorem 4.4).

1. DESCRIPTION OF THE SYSTEM AAwe

1.1. The language

Let us use function constants 0 (nil), * (next), and possibly other
constants for computable functions; equality =; bound individual
variables; free and bound predicate variables; logical connectives 71, V,
A, 4, V, A (lambda-symbol); е (second order epsilon-symbol); subsi-
diary symbols (,), ~ —.

By denotation e[s], or shortly es, we will distinguish some occur-

rences of a subword s in a word e.

1.2. 0-terms

0-terms are built from function constants.
Note that all O-terms have their values calculated via interpretations

of function constants.

1.3. I-terms and formulas

I-terms and formulas are defined simultaneously.
1) A free predicate variable is a 1-term;
2) if s and ¢ are O-terms and T is a l-ferm then s={ and T(¢) are

formulas; .
3) if F and G are formulas then "IF, F\/G, and F/\G are formulas;
4) # РО is a formula then UxFx and VxFx are formulas;
5) if FA is a formula and A does not occur in the scope of any epsi-

lon-symbol in FA then HXFX and VXFX are formulas;
6) if FA is a formula and A does not occur in the scope of any epsi-

lon-symbol in FA then eXFX is a 1-term;
7) if FO is a formula then AxFx is a 1-term.
A formula is elementary iff it is of a form s=t, A(f) ог eXFX(¢).
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1.4. Quasiterms and quasiformulas

Quasiterms and quasiformulas are obtained from terms and formulas
by replacement of some occurrences of numerals and free predicate
variables by bound variables. An occurrence of a bound variable is called
principal in a quasiterm or quasiformula E iff it is not bound by a quanti-
fier or epsilon- or lambda-symbol in E.

An expression is a quasiterm or quasiformula.
An expression is arithmetical 1Н й does not contain predicate

variables.

Let e be a quasiterm and E be an expression. Epsilon-degree of an

occurrence of e in E is the number of epsilon-symbols in E to the scopes
of which this particular occurrence of e belongs. e is a quasisubterm of
Е 1 its principal variables are principal in E.

Note 1. If E is an expression and e is its quasisubterm then the result
of substituting terms for all principal variables of e is a subterm of the
result of the same substitution in E.

Note 2. If F is a formula and T is an epsilon-quasiterm occurring
in F then T contains no principal predicate variables.

Note 3. If F is a formula and 71 and T 2 are occurrences of epsilon-
quasiterms in F then one of the following holds:

(1) T 2 is a subword of T1;
(2) T 1 is a subword of T2;
(3) no occurrences of letters in 71 belong to T2. _

1.5. Matrix

The matrix of an epsilon-quasiterm is obtained by replacement of its
exterior 0-quasisubterms by free individual variables. Two epsilon-quasi-
terms are congruent iff their matrices coincide (up to names of variables).

Two formulas or epsilon-terms are similar iff they have the same

expression after the replacement of exterior 0-subterms by their values.

1.6. Rules of inference

® Axioms:

D’F'_*@’D’

where D is elementary;
® Rules for the introduction of logical connectives: usual Gentzen-

type rules for w-system preserving main formula in premises, for
instance:

L 0 PAL T>B,FAGGC),
Г — @, Е / С

,

...-T—>6B, VxFx, Fn; ... (In<xo) >V:
I'>O, VxFx

,

ЕТ, УХЕХ, Г — @
———VV ,VÄFX,T—>B

where T is an arithmetical 1-term or a free predicate variable;
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Г— @, ЯХЕХ, Е7
ая

T>6dXFXx
75

where T is an arithmetical 1-term or a free predicate variable;

Г— @, VXFX, FA
>VV

Г —@, УХЕХ

(A does not occur in the conclusion);

I'> 0, AxFx(t), Ft
—

Г — @, AxFx(t)

® Epsilon-rule:

I'->O,FT F[eXFX], -0
____—____'__.—___._-8,

I'>o6

where T is an artihmetical 1-term ог a free predicate variable;
@ Equality rule:

s=t,l'[s] >O[s] .
—г e[] £t

® Mathematical rules:

s=t,l'—>o >M,
Гг @

where s=¢{ is a true equality;

I'>o,s=t

rog
—M

where s=t* is a false equality;

® Cut:

_______Г—›Э‚Рг@_ cut.
Г - @

Lists of formulas are treated up to permutations of their members.
Cuts and epsilon-rules will be jointly called cut-epsilon-rules. =

1.7. Height h of a derivation

Let d be a derivation. We define A(d) by induction on 4.
Н а is an axiom with main formula s=¢ then h(d):=0;
if d is an axiom with main formula A(f) ог eXFX(¢{) then h(d) :=w;
if d ends in an equality or mathematical rule and hy is the height of

the derivation of its premise then h(d) :=ho;
if d ends in any other rule and h; are the heights of the derivations

of its premises then h(d) :=supi(h: 4+ 1).

1.8. Embedding of AA¢ into AAwe

Arithmetical analysis with epsilon-symbol is obviously embeddable
into AAwe: first, comprehension axiom is cut-epsilon-free derivable by
a derivation of finite height using — A, A —-rules introducing AxFx and
— HH-rule with AxFx as side term: we derive — Vy(AxFx(y)<> Fy)
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апа then — HXVy(X(y) <>Fy); second, Hilbert’s epsilon-axiom
ЁТ — F[eXFX] is cutfree derivable by a derivation of the height << @

* 2
using epsilon-rule with side term 7 and main term eXFX: we apply it
to derivations of FT — FT, F[eXFX] and FT, F[eXFX] — F[eXFX]; third,
induction-rule is derivable via cuts and w-rule similarly to [?], Theorem
20.13: its translation increases the height up to the first limit ordinal
greater than heights of translations of premises.

1.9. Lemma

For each epsilon-rule with side formula FT and main formula
F[eXFX] the following holds:

1) each occurrence of eXFX in F[eXFX] shown explicitly has
epsilon-degree 0 in it;

2) each epsilon-quasiterm occurring in FT, F[eXFX] either is the
term eXFX shown explicitly бг occurs inside such eXFX:

3) formulas FT and F[eXFX] contain no epsilon-quasiterms con-

gruent with eXFX except eXFX shown explicitly.

Proof.

1) Suppose that some occurrence of eXFX shown explicitly has
epsilon-degree > 0 in F[eXFX]. Then there is an epsilon-quasiterm R
in FA containing A. But it is impossible due to definition 1.3,6).

2) Let R be an epsilon-quasiterm in FT or F[eXFX] distinct from
eXFX shown explicitly. According to 1.4, Note 3 either one of R, eXFX
occurs inside the other or they do not intersect. 7 and eXFX cannot be
subterms of R due to 1). R cannot occur inside T since T contains no

bound predicate variables. If R and eXFX do not intersect the R occurs

in FA and A does not occur in R and hence R occurs inside eXFX.
3) Immediate from 2) in view of the observation that congruent

epsilon-quasiterms cannot occur inside each other. O

2. RANK

2.1. Rank of artihmetical expressions

1) Rank of a O-term is 0;
2) гапК of s=t¢"is 0; rank of AxFx(¢) is rank(AxFx);
3) rank of "1F is rank(F)-1; rank of F\VG,FAG is

max (rank(F), rank(G))+l; '
4) гапК of UxFx, VxFx 15 гапК(ЕO) +-1;
5) rank of AxFx is rank(Fo)+4l.

2.2. R-rank

Let R be an integer. If the opposite is not stated explicitly, every-
where below “rank” means R-rank.

1) rank of a O-term is 0;
2) rank of s=f is 0;
3) rank of a free predicate variable is R;
4) rank of A(t), AxFx(t), eXFX(t) is rank(A), rank(AxFx),

rank (eXFX), respectively;
5) rank of РЕ is rank(F)+l; rank of F\/ G, FA G is

max(rank(F), rank(G)) +1;
6) rank of HxFx, VxFx, AxFx is rank(Fo)4l; rank of HXFX, VXFX,

eXFX is rank(FA) 41,
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Rank of an expression E is the rank of the term or formula from
which E is obtained.

eR-rank of a formula or sequent is the maximum R-rank of epsilon-
quasiterms occurring in it.

2.3. Rank of a cut ВЕ

Rank of a cut is the rank of its cut-formula; rank of an epsilon-rule
is the rank of its main term.

2.4. Гетта
|

1) Congruent epsilon-quasiterms have the same rank;
2) if e is an epsilon-quasiterm occurring in an epsilon-term or for-

mula E then rank(e)<rank(E); if additionally e is not a term then
rank (e) <<rank(E). ;

Immediate from the definition of rank.

2.5. Lemma

S, T being 1-terms and EA being a term or a formula, if rank(S) <

< rank(T) then rank(ES)< rank(ET). .

Proof is by induction on the expression EA. ;
If EA is an atomic formula not containing A then the assertion is

evident. If EA is a formula A(¢) then the assertion follows from item 4

of the definition of R-rank. Н EA is a formula ¢YGY(f) or AyGy(t) then

the assertion follows from the induction hypothesis for eYGY or AyGy.
If EA is a formula F, F\/ G ог F A G then the assertion follows

from the hypotheses for F and G. If EA is a formula HyGy, VyGy or

a term AyGy then the assertion follows from the hypothesis for the

formula GO. Finally, if EA isa formula HYGY, VYGY ога term eYGY

then the assertion follows from the hypothesis for GB.

1) EA is a O-term. Then
rank (ES) =rank(EA)=rank(ET)=o.
2) EA is an atomic formula not containing A. Then
rank (ES) =rank(EA)=rank(ET). -

3) EA is a formula A(¢). Then

rank (ES) =rank(S(¢)) =rank(S) <<rank(T)=rank(7({) )=rank(ET).
4) ЕА is a formula AyG[y, A] (). Then

rank (ES) =rank (AyGly, S] (%)) =rank(7\yosy, s]) <

/* induction hypothesis */ <rank(ayG[y, T])=rank(x4Gf[y, T] (8))=
==rank(ET).

5) EA is a formula eYG[Y, A](¢). Then

rank (ES) =rank(eYG[Y, S] (f)) =rank(eYG[Y, S]) <

/* induction hypothesis */ <Crank(eYG[Y, T])=rank(eYG[Y, T]({))=
=rank(ET).

6) EA is a formula IFA, FA V GA or FA A\ GA. Then ;
rank (TIFS) =rank(FS) +l<rank(FT)+l=rank(IFT),
rank (ES) =max(rank(FS),rank(GS))+l<

<max(rank(FT), rank(GT))+l=rank(ET).
7) EA is a formula HyGly, A], VyG[y,A] or a term ÄyGéy,A]. Then

rank(ES) =rank(G[o,S])+l<rank(G[o, 7]) +l=rank(ET).
8) EA is a formula AYG[Y,A], VYG[Y,A] or a term eYG[Y, Al.

Then rank(ES)=rank(G[B, S])+l<rank(G[B, T])+l=rank(ET). O
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2.6. Lemma

Rank(sXFX)=rank(E{XFX)=rank(VXFX)>rank(FT)
for arithmetical T of rank<<R or a free variable.

Proof. By the definition '
rank(eXFX)=rank(E[XFX)=rank(VXFX)=rank(FA)—|—l>rarlk(FT)
due the previous Lemma. O

2.7. Symbols d(R, a,r1,72)+ апа (R,a,rl, r 2) |

Let R, r 1 and r 2 be integers, a be an ordinal << ео апа S be a
sequent. Denotation (R, a,rl,r2) S means that there is a derivation
d of S such that:

:

1) arithmetical ranks of arithmetical side terms of rules VV—,
—- ЧЧ апаетааге <@;

2) h(d) <a;
3) R-ranks of all cuts in d are < rl;

° 4) R-ranks of all epsilon-rules jn d are < r2.
Denotation d(R, a,rl, r2) S means that d is such a derivation

of S.

2.8. Embedding Lemma

If a sequent S is derivable in AAe then there are R and r such that
(R,o%r,r) + 5.

Proof. Let d be a derivation of S in AAe. We set
R :=max(rank(T), rank (AxFx)| T to be a side term of epsilon-axioms

and FO to be an arithmetical formula of comprehension axioms п а);
r := the maximum R-rank of cuts, induction formulas and main terms
of epsilon-axioms in d-1.

4
The translation do of d according to 1.8 satisfies do(R, 0% r,r) |

DO

3. SUBSIDIARY OPERATIONS ,

3.1. Cleaning

A derivation in AAwe is cleaned iff its main equality is true for
each equality rule in it.

Any derivation can be turned into a cleaned derivation of the same
sequent. To ensure this we eliminate all equality rules

s=t,l'[s] > O[s]

s—г —г

with false main equalities s=¢, deriving their conclusions by
s=t, I'[t] - O[],s=t

S udt,ер
0001

From now on we will assume all derivations to be cleaned
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Further, we will not distinguish similar formulas and epsilon-terms
in derivations, since equal O-terms can always be replaced one by
another by the use of M—— and Eg-rules:

s==& Г[s] — ©[s]_
s=t,l'[t] — @ [7]

Г[] — @[l

Note 1. These transformations do not change the parameters of a

derivation. That means that if S’ is obtained from S by replacement of

some O-terms by equal O-terms and d(R,a,rl,r2) - S then

d(R,a,rl, r2) - S’ for some cleaned @'.

Note 2. Normalization steps described below in section 4 transform
noncleaned derivations into cleaned ones. Normalization of a translation
dw of a derivation d in AAe begins with cleaning do.

3.2. Weakening

The transformation described here is similar to that in [2], ALem-ma

2',3'11; r=l’, =0 and (Rarl,r2) } T—6 then (R,a,rl,r2) +
r _;f(‘?e; renaming variables, missing members of IV and ©" are added to

all sequents of the derivationI' -6.

3.3. Contraction j

If (R,a,rl,r2) v+ F,F,T>69or (R,a,rl,r2) T,O,F, F then

(R,a,rl,r2) + F,T>6B or (R,a,rl,r2) + T'—>oO,F respectively:
all pairs (F, F), which predecessors of (F,F) in the final sequent,

are replaced by F.

3.4. Inversions

Standard inversions of the rules —l, 11—, \/—>, —> A, Н—,
—V, Hd -, -VV, >A, A— hold in our system а$ well (с!. [B],
Lemma 2.5).

Here, as an example, we describe inversions of the rules — V and

— VV.
Let H be a derivation of either ' >O, VxFx or ' >O, VXFX and

let n be a numeral and T be ап arithmetical lambda-term of rank <<Ког
a free predicate variable. A derivation of I'—>o©, Fn or I'>O, FT,
respectively, is obtained in the following way:

1) eigenvariables of H are renamed so that none of them occurs in T;

2) all predecessors of VxFx, VXFX are replaced by Fn, FT, respect-
ively;

3) superfluous premises of damaged rules — V are pruned;
4) Т is substituted for eigenvariables of damaged rules — VV,;
5) sequents AxFx(t), I'> 00, AxFx(f) which appeared in place of

axioms are derived without cut-epsilon-rules in a standard way;
6) contraction rules which appeared in place of former -V, -VV

are eliminated from the tops to the bottom by the contraction operation.
Note that this operation does not change the parameters as well: if

(В, а, 71,72) - Г->@, 1Е еп (К,а, rl,r2) + F,T'—o efc,
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4. NORMALIZATION

4.1. Lemma

If (R,a,rl, r2) and (R,8,r1,r2) +
Г — @, 1Е Р, Гг-- @

r-06,F\VaGg Е\/С,Г--@
ЕЛС,Г @ Г—@, ЕЛС
Г— @, ЧхЁх ЧхЁх, Г — @

\хЁЕх, Г — @ Г — @, УхЁх
Г — @, ЯХЕХ ЧХЕХ, Г —>@
\УХЕХ, Г — @ Г — @, VXFX

Г — @, AxFx () rxxFx(t),T — 9

or

Г — @, Е Е,Г->@
for elementary F,

and rank(lF,F\/ G, FN\ G, dxFx, VxFx, HXFX, VXFX, AxFx, F)=rl
then (R,B+a,rl,r2) - I'—o6.

Proof is standard (cf. [B], Lemma 2.6 and [°], 22.4, Lemma 3). New

cuts of ranks <Crl are introduced in the places of introduction of for-

mulas IF,
...

from the left column. O

4.2. Cutelimination Theorem

П (К, а,71 + 1,72) - S then (R,2%r1,r2)+ 5.
Proof 15 by induction on @. .
If S is an axiom then the assertion is trivial.
If S is the conclusion of mathematical or equality rule then the

assertion follows from the inductive hypothesis by the definition of

height.
И $ is the conclusion of any rule except cut of rank rl, mathematical

or equality rules then by the induction hypothesis for the premises of

that rule (R, 2%,r1,r2)}~ holds for some a;<<a. Hence (R, sup;(2%+
+1),r1,7r1) - holds for the conclusion. The assertion follows from the

fact that sup;(2%4-I)<<2%
If S is the conclusion of a cut of rank r 1 then by the induction

hypothesis (R, 2%, rl, r2) I holds for its premises for some w;<<a, i=l, 2.

By the previous Lemma (R, 2% -+2%,r1,r2) } holds for the conclusion.
The assertion follows from the fact that 2%, 4 2%, < 22. [0

4.3. Lemma (substitution for an epsilon-term)

If (R,a,r+l,r) F[eXFX],l'—0, rank(eXFX)>r,l'—>@ contains

no eXFX and quasiterms congruent with eXFX which are not terms, and

T is an arithmetical 1-term of rank<Cß ог a free variable then (R, a,r+
+l,r) + FT,l'—>o.

Proof. Let d(R,a,r+l,r) + F[eXFX],l'—>0. Condition

d(R,a,r+l,r)| implies that there are no cut-epsilon-rules whose main

formulas (terms) contain epsilon-quasiterms congruent with eXFX in d.
It means that there are no epsilon-quasiterms congruent with eXFX
which are not terms in d at all, and all occurrences of eXFX in d

are predecessors of eXFX from the formula F[eXFX] shown explicitly.
Thus substitution of T for eXFX preserves all rules of inference except

axioms and does not change formulas from T, ®. Sequents
T(t),A—A,T(t) which replace axioms are cut-epsilon-iree, derived in

a standard way. [J
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4.4. Epsilon-elimination Theorem

If (R,a,r+l,r+l) p T—>9 and for each occurrence of an epsilon-
quasiterm ¢eXFX of rank >гт Г — © there is a formula F[eXFX] in

Г then (R,a,r+l,r) + Г— @.

Proof 15 by induction on a.

If ' >0 is an axiom then the assertion is trivial.
If '>© is the conclusoin of any other rule except an epsilon-rule

of rank r+4l then the assertion follows immediately from the induction

hypothesis.
Suppose that Г -—> @ is the conclusion of an epsilon-rule with main

term eXFX of rank r+4l.
If eXFX occurs in I'—> 0 then Г—>@ can be presented in the form

FIeXFX],IY—0. Hence the right premise о! this epsilon-rule 15

FIeXFX], F[eXFX],l”"— 0 and by the induction hypothesis (К, аl, r+ 1,
r) + holds for it for some a;<<a. Thus by contraction 3.3 (R, a,r+l,
r)+ T—>B9.

If eXFX does not occur in T—B then by the induction hypothesis
(R,ay,7+l,7r) - T—69,FT for arithmetical 7 of ranksß ог а free

variable and (R, as, r+l,7) + F[eXFX],l'—>o for some ai, az<a. By
Lemma 4.3 (R, az, r+l,r) - FT,l'—o. Since rank(FT) <rank(eXFX)=
=r+l, we have (R,a,r+l,7r) - Г @. O

4.5. Normalization Theorem

If (Ra,r,r) $ апа eR — rank(S)=R then (R 2% 0, Ю)-- 5.

Proof. If (R, a,r+l,r+l) } S for R<r+l then by Epsilon-elimina-
tion Theorem (R,a,r+l,r)+ S and by Cutelimination Theorem

(R,2% r,r) S. If (R,a,r+l,R) + 5 еп by Cutelimination Theorem

(R,2%r,R) + S.

Applying this argument r times we obtain (R,2%,0,R) + S. O

4.6. Corollary

If a sequent Sis derivable in AAe then (R, B, 0, R) S for some

integer R, ordinal p<<ey and R=¢R—rank(S).
Immediate from Embedding Lemma 1.8 and Normalization Theo-

rem 4.5. S

4.7. Corollary

If an epsilon-free seguent is derivable in AAe then it is cut-epsilon-
[ree derivable in AAwe.

Immediate from Corollary 4.6. '

4.8. Corollary about consistency

AAe is consistent.
Immediate from Corollary 4.7.
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4.9. Corollary. Herbrand’s theorem _

If AxFx is derivable п AAe for propositional F then

Еп, \/ Fny \/ ...\/ Fny is derivable for some numerals n, ng, ..., fp.

Proof. Let d be a derivation of HxFx in AAe. Then by Corollary
4.7 HxFx is cut-epsilon-free derivable in AAwe. Since the latter deriv-

ation contains no w-rules, it is a cutfree derivation in the first order

predicate calculus. [J '
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NORMALISEERIMINE HILBERTI EPSILONSUMBOLIGA

ARITMEETILISE ANALUUSI PUHUL

Sergei TUPAILO

On esitatud teatavat valikuprintsiipi esitava Hilberti epsilonaksioo-
miga tdiendatud aritmeetilise апа 51 normaliseeritavuse toestus. Toes-
tamisel on kasutatud transfiniitset induktsiooni kuni epsilon—Oo-ni.

НОРМАЛИЗАЦИЯ ДЛЯ АРИФМЕТИЧЕСКОГО АНАЛИЗА
С ГИЛЬБЕРТОВСКИМ ЭПСИЛОН-СИМВОЛОМ

| Сергей ТУПАЙЛО |

Приведено доказательство нормализуемости для арифметики второго

порядка с арифметическим свертыванием и Гильбертовской эпсилон-

аксиомой, представляющей некоторый принцип выбора. Доказательство
проведено индукцией до эпсилон-0.
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