Proc. Estonian Acad. Sci. Phys. Math., 1993, 42, 4, 289—299
https://doi.org/10.3176/phys.math.1993.4.01

NORMALIZATION FOR ARITHMETICAL COMPREHENSION WITH RESTRICTED OCCURRENCES OF HILBERT'S EPSILON-SYMBOL

Sergei TUPAILO

Eesti Teaduste Akadeemia Küberneetika Instituut (Institute of Cybernetics, Estonian Academy of Sciences), Akadeemia tee 21, EE-0026 Tallinn, Eesti (Estonia)

Electronic mail: sergei@ioc.ee

Presented by E. Tougu

Received October 5, 1992; revised May 20, 1993; accepted June 17, 1993

Abstract. We present a normalization proof for the second order arithmetic with arithmetical comprehension and Hilbert's epsilon-axiom $F[T] \to F[\epsilon XFX]$ which represents a kind of choice principle. The proof is carried out by transfinite induction up to ϵ_0 .

Key words: second order arithmetic, normalization of proof, axiom of choice, Hilbert's epsilon-axiom.

INTRODUCTION

Since the existence of a normal form for the second order classical logic with the axiom of choice was proved in [¹] there has been no progress in establishing a normalization theorem for that theory or even in finding a promising set of reductions. It became possible to look at this problem from another point of view after it was noted in [²] that the (0,1)-Axiom of Choice is derivable in Hilbert's epsilon-calculus (the derivation in fact is contained in [³], pp. 467—469). This gave an opportunity to apply normalization techniques to systems with epsilon-symbol, developed, for instance, in [³], [⁴] and [⁵] for normalizing theories with various kinds of the axiom of choice (AC).

Analysis of the derivation of AC in [3] shows that in the presence of quantifiers only epsilon-terms of a special kind are needed for deriving AC: we can assume that epsilon-terms do not contain second order variables bound by exterior quantifiers or epsilon-symbols (though they may contain second order variables bound inside them). This restriction allows to avoid the problems connected with the absence of a notion of rank in the second order logic and can be kept under some reasonable

sequence of reductions [6].

In this paper we examine the sequence of reductions [6] for a weak subsystem of analysis, second order arithmetic with arithmetical comprehension and corresponding choise principle $FT \rightarrow F[\epsilon XFX]$ with arithmetical T, and prove its convergence by induction up to ϵ_0 . Note that, as it follows from [7], one cannot add an unrestricted axiom of choice to weak predicative subsystems without increasing the proof-theoretical strength of the theory.

© Eesti TA Toimetised, Füüsika * Matemaatika, 1993

By arithmetical analysis AA we mean the second order arithmetic with arithmetical comprehension (without parameters). As it is noted in [7], this system is conservative over Peano Arithmetic. By arithmetical analysis with epsilon-symbol AAE we mean the following extension of AA:

(1) an additional item in the definition of terms and formulas is allowed: if FA is a formula and A does not occur in the scope of any epsilon-symbol of FA then eXFX is a 1-term (predicator);

(2) second order quantification is restricted with respect to epsilonsymbol: if FA is a formula and A does not occur in the scope of any

epsilon-symbol in FA then $\exists XFX$ and $\forall XFX$ are formulas; (3) we have additional axioms $FT \to F[\varepsilon XFX]$ for T being arithmetic lambda-terms.

We provide the embedding of AAε into its ω-version AAωε, where positive occurences of first order quantifiers are introduced by ωrules and Hilbert's epsilon-axiom is taken in the form of epsilon-rule

$$\frac{\Gamma \to \Theta, FT \quad F[\varepsilon XFX], \Gamma \to \Theta}{\Gamma \to \Theta} \varepsilon,$$

and normalization of AAωε. Two types of reductions are developed. One is standard cutelimination as presented in [8], [9] (see Lemma 4.1, Theorem 4.2 of this paper). Another type of reductions is elimination of epsilon-rules in a way similar to [5] (Lemma 4.3, Theorem 4.4).

1. DESCRIPTION OF THE SYSTEM AAωε

1.1. The language

Let us use function constants 0 (nil), ' (next), and possibly other constants for computable functions; equality =; bound individual variables; free and bound predicate variables; logical connectives \(\tau_{\chi} \), \wedge , \exists , \forall , λ (lambda-symbol); ε (second order epsilon-symbol); subsidiary symbols $(,), ,, \rightarrow$. By denotation e[s], or shortly es, we will distinguish some occur-

rences of a subword s in a word e. To be guidening a guidening

this problem from another point of view after it was noted in [2] that the [0,1]-Axiom of Choice is desmret-0;.2.1 libert's epsilon-calculus (the derivation in fact is contained in [2], pp. 467—469). This gave an oppor-

0-terms are built from function constants.

Note that all 0-terms have their values calculated via interpretations of function constants. (OA) solide to more and to shall such as the state of the st

quantifiers only epsilo salumnol and serving and formulas of seeded for deriving

1-terms and formulas are defined simultaneously.

1) A free predicate variable is a 1-term;

- 2) if s and t are 0-terms and T is a 1-term then s=t and T(t) are formulas; some rebut deal of new bear logic and can be second under some right.
 - 3) if F and G are formulas then $\neg F$, $F \lor G$, and $F \land G$ are formulas;

4) if F0 is a formula then $\exists xFx$ and $\forall xFx$ are formulas;

- 5) if FA is a formula and A does not occur in the scope of any epsilon-symbol in FA then $\exists XFX$ and $\forall XFX$ are formulas;
- 6) if FA is a formula and A does not occur in the scope of any epsilon-symbol in FA then εXFX is a 1-term; ε

7) if F0 is a formula then $\lambda x Fx$ is a 1-term.

A formula is elementary iff it is of a form s=t, A(t) or $\varepsilon XFX(t)$.

1.4. Quasiterms and quasiformulas

Quasiterms and quasiformulas are obtained from terms and formulas by replacement of some occurrences of numerals and free predicate variables by bound variables. An occurrence of a bound variable is called principal in a quasiterm or quasiformula E iff it is not bound by a quantifier or epsilon- or lambda-symbol in E.

An expression is a quasiterm or quasiformula.

An expression is arithmetical iff it does not contain predicate variables.

Let e be a quasiterm and E be an expression. Epsilon-degree of an occurrence of e in E is the number of epsilon-symbols in E to the scopes of which this particular occurrence of e belongs. e is a quasisubterm of E iff its principal variables are principal in E.

- Note 1. If E is an expression and e is its quasisubterm then the result of substituting terms for all principal variables of e is a subterm of the result of the same substitution in E.
- **Note 2.** If F is a formula and T is an epsilon-quasiterm occurring in F then T contains no principal predicate variables.
- Note 3. If F is a formula and T1 and T2 are occurrences of epsilonquasiterms in F then one of the following holds:
 - (1) T2 is a subword of T1; (2) T1 is a subword of T2;
- (3) no occurrences of letters in T1 belong to T2. supports of R due to 1). R cannot enacte incide T since T contains no bound predicate variables. If R and eXFX do not intersect the R occurs

1.5. Matrix

The matrix of an epsilon-quasiterm is obtained by replacement of its exterior 0-quasisubterms by free individual variables. Two epsilon-quasiterms are *congruent* iff their matrices coincide (up to names of variables).

Two formulas or epsilon-terms are *similar* iff they have the same expression after the replacement of exterior 0-subterms by their values.

1.6. Rules of inference Lists of formulas, are figured up to permulations of their members. Cuts and epsilon-rules will be jointly called cut-epsilon : smoixA

$$\begin{array}{c} \max(\operatorname{rank}(F),\operatorname{rank}(G)) + 1 \\ + 1 \\ + 1 \end{array} D, \Gamma \rightarrow \Theta, D,$$

where *D* is elementary;

 Rules for the introduction of logical connectives: usual Gentzentype rules for w-system preserving main formula in premises, for

$$\overrightarrow{T} \rightarrow \overrightarrow{\Theta}, \overrightarrow{X}\overrightarrow{A}\overrightarrow{X}\overrightarrow{E} \xrightarrow{\overrightarrow{\Gamma}} \overrightarrow{A}$$
, $\overrightarrow{A}\overrightarrow{A}\overrightarrow{X}\overrightarrow{E}, \overrightarrow{\Theta} \leftarrow \overrightarrow{T}$

where T is an arithmetical 1-term or a free predicate variable;

$$\frac{\Gamma \to \Theta, \, \forall XFX, FA}{\Gamma \to \Theta, \, \forall XFX} \to \forall \forall \forall \text{ and } \forall \text{ on }$$

(A does not occur in the conclusion);

$$\frac{\Gamma \to \Theta, \lambda x F x(t), F t}{\Gamma \to \Theta, \lambda x F x(t)} \to \lambda;$$
Final one rule:

• Epsilon-rule:

$$\frac{\Gamma \to \Theta, FT \quad F[\varepsilon XFX], \Gamma \to \Theta}{\Gamma \to \Theta} \varepsilon,$$

where T is an artihmetical 1-term or a free predicate variable;

• Equality rule:

$$\frac{s=t, \Gamma[s] \to \Theta[s]}{s=t, \Gamma[t] \to \Theta[t]} \text{Eq};$$

Mathematical rules:

1 rules:
$$\underbrace{s = t, \Gamma \rightarrow \Theta}_{\Gamma \rightarrow \Theta} \rightarrow M,$$

where s=t is a true equality;

$$\frac{\Gamma \to \Theta, s = t}{\Gamma \to \Theta} M \to ,$$
 ality;

where s=t is a false equality;

• Cut:

$$\frac{\Gamma \to \Theta, F \quad F, \Gamma \to \Theta}{\Gamma \to \Theta} \text{ cut.}$$

Lists of formulas are treated up to permutations of their members. Cuts and epsilon-rules will be jointly called cut-epsilon-rules.

1.7. Height h of a derivation

Let d be a derivation. We define h(d) by induction on d. If d is an axiom with main formula s=t then h(d):=0;

if d is an axiom with main formula A(t) or $\varepsilon XFX(t)$ then $h(d) := \omega$; if d ends in an equality or mathematical rule and h_0 is the height of the derivation of its premise then $h(d) := h_0$;

if d ends in any other rule and hi are the heights of the derivations

of its premises then $h(d) := \sup_{i} (h_i + 1)$.

1.8. Embedding of AAε into AAωε

Arithmetical analysis with epsilon-symbol is obviously embeddable into AAwe: first, comprehension axiom is cut-epsilon-free derivable by a derivation of finite height using $\rightarrow \lambda$, $\lambda \rightarrow$ -rules introducing $\lambda x Fx$ and \rightarrow EX-rule with $\lambda x Fx$ as side term: we derive $\rightarrow \forall y (\lambda x Fx(y) \leftrightarrow Fy)$

and then $\rightarrow \exists X \forall y (X(y) \leftrightarrow Fy)$; second, Hilbert's epsilon-axiom $FT \rightarrow F[\epsilon XFX]$ is cutiree derivable by a derivation of the height $< \omega * 2$ using epsilon-rule with side term T and main term εXFX : we apply it to derivations of $FT \to FT$, $F[\varepsilon XFX]$ and FT, $F[\varepsilon XFX] \to F[\varepsilon XFX]$; third, induction-rule is derivable via cuts and ω-rule similarly to [9], Theorem 20.13: its translation increases the height up to the first limit ordinal greater than heights of translations of premises.

Rank of a cut is the rank ammad 1.9.1 mula; rank of an epsilon-rule

For each epsilon-rule with side formula FT and main formula $F[\varepsilon XFX]$ the following holds:

1) each occurrence of eXFX in F[eXFX] shown explicitly has

epsilon-degree 0 in it:

2) each epsilon-quasiterm occurring in FT, F[EXFX] either is the

term EXFX shown explicitly or occurs inside such EXFX;

3) formulas FT and F[EXFX] contain no epsilon-quasiterms congruent with eXFX except eXFX shown explicitly.

1) Suppose that some occurrence of eXFX shown explicitly has epsilon-degree > 0 in $F[\varepsilon XFX]$. Then there is an epsilon-quasiterm R in FA containing A. But it is impossible due to definition 1.3, 6).

2) Let R be an epsilon-quasiterm in FT or F[eXFX] distinct from EXFX shown explicitly. According to 1.4, Note 3 either one of R, EXFX occurs inside the other or they do not intersect. T and εXFX cannot be subterms of R due to 1). R cannot occur inside T since T contains no bound predicate variables. If R and eXFX do not intersect the R occurs in FA and A does not occur in R and hence R occurs inside εXFX .

3) Immediate from 2) in view of the observation that congruent

epsilon-quasiterms cannot occur inside each other.

ent of standard and more stand 2.1. Rank of artihmetical expressions and an analysis

1) Rank of a 0-term is 0;

2) rank of s=t is 0; rank of $\lambda xFx(t)$ is rank (λxFx) ;

3) rank of $\neg F$ is rank(F)+1; rank of $F \lor G, F \land G$ is $\max(\operatorname{rank}(F), \operatorname{rank}(G)) + 1;$

4) rank of $\exists xFx$, $\forall xFx$ is rank(F0)+1;

5) rank of $\lambda x F x$ is rank (F0) + 1.

2.2. R-rank

Let R be an integer. If the opposite is not stated explicitly, everywhere below "rank" means R-rank.

1) rank of a 0-term is 0:

1) rank of a 0-term is 0: 2) rank of s=t is 0;

3) rank of a free predicate variable is R;

4) rank of A(t), $\lambda x F x(t)$, $\varepsilon X F X(t)$ is rank(A), rank($\lambda x F x$), rank(εXFX), respectively;

5) rank of $\neg F$ is rank(F)+1; rank of $F \lor G$, $F \land G$ is

 $\max(\operatorname{rank}(F), \operatorname{rank}(G)) + 1;$

6) rank of $\exists xFx$, $\forall xFx$, λxFx is rank(F0)+1; rank of $\exists XFX$, $\forall XFX$, ϵXFX is rank(FA)+1. Rank of an expression E is the rank of the term or formula from which E is obtained.

ER-rank of a formula or sequent is the maximum R-rank of epsilon-

quasiterms occurring in it.

2.3. Rank of a cut

Rank of a cut is the rank of its cut-formula; rank of an epsilon-rule is the rank of its main term.

and utilizing muscale TXAX 2.4. Lemma , to emerging the state of

1) Congruent epsilon-quasiterms have the same rank;

2) if e is an epsilon-quasiterm occurring in an epsilon-term or formula E then rank (e) \leq rank (E); if additionally e is not a term then rank(e) < rank(E).

Immediate from the definition of rank.

epsilon-degree > 0 in Flat ammal .5.2 re-is an epsilon-quasiterm R in FA containing A. But it is unpossione due to definition 1.3, 6). S, T being 1-terms and EA being a term or a formula, if rank(S) \leq $\leq \operatorname{rank}(T)$ then $\operatorname{rank}(ES) \leq \operatorname{rank}(ET)$.

Proof is by induction on the expression EA.

If EA is an atomic formula not containing A then the assertion is

evident. If EA is a formula A(t) then the assertion follows from item 4 of the definition of R-rank. If EA is a formula $\varepsilon YGY(t)$ or $\lambda yGy(t)$ then

the assertion follows from the induction hypothesis for ϵYGY or λyGy . If EA is a formula $\neg F$, $F \lor G$ or $F \land G$ then the assertion follows from the hypotheses for F and G. If EA is a formula \(\frac{1}{2}yGy\), \(\frac{1}{2}YGy\) or a term $\lambda y G y$ then the assertion follows from the hypothesis for the formula G0. Finally, if EA is a formula $\Xi Y G Y$, $\nabla Y G Y$ or a term $\varepsilon Y G Y$ then the assertion follows from the hypothesis for GB.

1) EA is a 0-term. Then

rank(ES) = rank(EA) = rank(ET) = 0.

2) EA is an atomic formula not containing A. Then

rank(ES) = rank(EA) = rank(ET). 3) EA is a formula A(t). Then

3) EA is a formula A(t). Then

 $\operatorname{rank}(ES) = \operatorname{rank}(S(t)) = \operatorname{rank}(S) \leq \operatorname{rank}(T) = \operatorname{rank}(T(t)) = \operatorname{rank}(ET)$.

4) EA is a formula $\lambda yG[y,A](t)$. Then rank (ES) = rank $(\lambda yG[y,S](t))$ = rank $(\lambda yG[y,S]) \leqslant$ /* induction hypothesis */ \leqslant rank $(\lambda yG[y,T])$ = rank $(\lambda yG[y,T](t))$ = =rank(ET).

5) EA is a formula $\varepsilon YG[Y,A](t)$. Then

- $\operatorname{rank}(ES) = \operatorname{rank}(\varepsilon YG[Y, S](t)) = \operatorname{rank}(\varepsilon YG[Y, S]) \leqslant \operatorname{r$ /* induction hypothesis */ $\leq \operatorname{rank}(\epsilon YG[Y,T]) = \operatorname{rank}(\epsilon YG[Y,T](t)) =$ =rank(ET).
- 6) EA is a formula $\neg FA$, $FA \lor GA$ or $FA \land GA$. Then $\operatorname{rank}(\neg FS) = \operatorname{rank}(FS) + 1 \leq \operatorname{rank}(FT) + 1 = \operatorname{rank}(\neg FT), \text{ of the state of the stat$ $\operatorname{rank}(ES) = \max(\operatorname{rank}(FS), \operatorname{rank}(GS)) + 1 \leqslant \max(A) + 1 \leqslant \max(FT), \operatorname{rank}(GT) + 1 = \operatorname{rank}(ET).$

7) EA is a formula $\exists yG[y,A]$, $\forall yG[y,A]$ or a term $\lambda yG[y,A]$. Then rank(ES) = rank(G[0,S])+1 \leq rank(G[0,T])+1 = rank(ET). 8) EA is a formula $\exists YG[Y,A]$, $\forall YG[Y,A]$ or a term $\epsilon YG[Y,A]$. Then rank(ES) = rank(G[B,S])+1 \leq rank(G[B,T])+1 = rank(ET). \square

Further, we will not distracted and epsilon-terms in derivations, since equal 0-terms can always be replaced one by. $Rank(\varepsilon XFX) = rank(\Xi XFX) = rank(\nabla XFX) > rank(FT)$ for arithmetical T of rank ≤ R or a free variable.

Proof. By the definition $\operatorname{rank}(\varepsilon XFX) = \operatorname{rank}(\exists XFX) = \operatorname{rank}(\nabla XFX) = \operatorname{rank}(FA) + 1 > \operatorname{rank}(FT)$ due the previous Lemma.

2.7. Symbols $d(R, \alpha, r1, r2) +$ and $(R, \alpha, r1, r2) +$

Let R, r1 and r2 be integers, α be an ordinal $< \epsilon_0$ and S be a sequent. Denotation $(R, \alpha, r1, r2) + S$ means that there is a derivation d of S such that:

1) arithmetical ranks of arithmetical side terms of rules $VV \rightarrow$,

 $+ R \leq R$;

2) $h(d) \leq \alpha$;

2) $h(d) \leq \alpha$; 3) R-ranks of all cuts in d are < r1;

4) R-ranks of all epsilon-rules in d are $\leq r2$.

Denotation $d(R, \alpha, r1, r2) \vdash S$ means that d is such a derivation of S.

2.8. Embedding Lemma

If a sequent S is derivable in AAE then there are R and r such that $(R, \omega^2, r, r) \vdash S$

Proof. Let d be a derivation of S in $AA\varepsilon$. We set $R := \max(\operatorname{rank}(T), \operatorname{rank}(\lambda x F x) \mid T$ to be a side term of epsilon-axioms and F0 to be an arithmetical formula of comprehension axioms in d); r:= the maximum R-rank of cuts, induction formulas and main terms of epsilon-axioms in d+1.

The translation $d\omega$ of d according to 1.8 satisfies $d\omega(R, \omega^2, r, r)$

S. \square

3. SUBSIDIARY OPERATIONS (6.2 mms.)

bus XXXV. 8 - 7 10 xAvy 3.1. Cleaning to multivistable and We to Jutains

A derivation in $AA_{\omega\epsilon}$ is cleaned iff its main equality is true for

each equality rule in it. Any derivation can be turned into a cleaned derivation of the same sequent. To ensure this we eliminate all equality rules

$$\frac{s = t, \Gamma[s] \to \Theta[s]}{s = t, \Gamma[t] \to \Theta[t]} \text{ Eq}$$

with false main equalities $s\!=\!t$, deriving their conclusions by $\frac{s\!=\!t,\,\Gamma[t]\to\Theta[t],\,s\!=\!t}{s\!=\!t,\,\Gamma[t]\to\Theta[t]}\to M.$ From now on we will assume all derivations to be

$$\frac{s=t, \Gamma[t] \to \Theta[t], s=t}{s=t, \Gamma[t] \to \Theta[t]} \to M.$$

From now on we will assume all derivations to be cleaned.

Further, we will not distinguish similar formulas and epsilon-terms in derivations, since equal 0-terms can always be replaced one by another by the use of $M \rightarrow -$ and Eq-rules:

$$\underbrace{s=t, \Gamma[s] \to \Theta[s]}_{s=t, \Gamma[t] \to \Theta[t]}$$

- **Note 1.** These transformations do not change the parameters of a derivation. That means that if S' is obtained from S by replacement of some 0-terms by equal 0-terms and $d(R, \alpha, r1, r2) \vdash S$ then $d'(R, \alpha, r1, r2) \vdash S'$ for some cleaned d'.
 - Note 2. Normalization steps described below in section 4 transform noncleaned derivations into cleaned ones. Normalization of a translation d_{ω} of a derivation d in AAs begins with cleaning d_{ω} .

3.2. Weakening

The transformation described here is similar to that in [8], Lemma 2.3.1.

If $\Gamma \subseteq \Gamma'$, $\Theta \subseteq \Theta'$ and $(R, \alpha r_1, r_2) \vdash \Gamma \rightarrow \Theta$ then $(R, \alpha, r_1, r_2) \vdash$

 $\Gamma' \to \Theta'$:

after renaming variables, missing members of Γ' and Θ' are added to all sequents of the derivation $\Gamma \to \Theta$.

3.3. Contraction

If $(R, \alpha, r1, r2) \vdash F, F, \Gamma \rightarrow \Theta$ or $(R, \alpha, r1, r2) \vdash \Gamma, \Theta, F, F$ then $(R, \alpha, r1, r2) \vdash F, \Gamma \rightarrow \Theta$ or $(R, \alpha, r1, r2) \vdash \Gamma \rightarrow \Theta, F$ respectively: all pairs (F, F), which predecessors of (F, F) in the final sequent, are replaced by F.

3.4. Inversions

Here, as an example, we describe inversions of the rules $\rightarrow V$ and

 $\rightarrow \forall \forall$.

Let H be a derivation of either $\Gamma \to \Theta$, $\forall xFx$ or $\Gamma \to \Theta$, $\forall XFX$ and let n be a numeral and T be an arithmetical lambda-term of rank $\leqslant R$ or a free predicate variable. A derivation of $\Gamma \to \Theta$, Fn or $\Gamma \to \Theta$, FT, respectively, is obtained in the following way:

1) eigenvariables of H are renamed so that none of them occurs in T; 2) all predecessors of $\forall xFx$, $\forall XFX$ are replaced by Fn, FT, respect-

ively;

3) superfluous premises of damaged rules \rightarrow V are pruned; 4) T is substituted for eigenvariables of damaged rules \rightarrow VV;

5) sequents $\lambda x Fx(t)$, $\Gamma \to \Theta$, $\lambda x Fx(t)$ which appeared in place of axioms are derived without cut-epsilon-rules in a standard way;

6) contraction rules which appeared in place of former $\rightarrow V$, $\rightarrow VV$ are eliminated from the tops to the bottom by the contraction operation. Note that this operation does not change the parameters as well: if

 $(R, \alpha, r1, r2) \vdash \Gamma \rightarrow \Theta, \neg F \text{ then } (R, \alpha, r1, r2) \vdash F, \Gamma \rightarrow \Theta \text{ etc.}$

4. NORMALIZATION

4.1. Lemma

If $(R, \alpha, r1, r2) + \Gamma \rightarrow \Theta, \neg F$ and $\Gamma \to \Theta, F \vee G$ $\Gamma \to \Theta, F \wedge G$ $F \wedge G, \Gamma \rightarrow \Theta$ $\Gamma \to \Theta$, $\exists x F x$ $\forall xFx, \Gamma \rightarrow \Theta$ $X \rightarrow \Theta, \exists X F X$ $\Theta \leftarrow \gamma$, $X \neq X \to \Theta$ $\forall XFX, \Gamma \rightarrow \Theta$ $\lambda x F x(t), \Gamma \rightarrow \Theta$ $\Gamma \to \Theta$, $\lambda x F x(t)$ in expression $\Gamma \to \Theta$ then $\Gamma \to \Theta$ premise or $\Gamma \to \Theta$, F

for elementary F,

and rank $(\neg F, F \lor G, F \land G, \exists xFx, \forall xFx, \exists XFX, \forall XFX, \lambda xFx, F) = r1$ then $(R, \beta + \alpha, r1, r2) \vdash \Gamma \rightarrow \Theta$.

Proof is standard (cf. [8], Lemma 2.6 and [9], 22.4, Lemma 3). New cuts of ranks < r1 are introduced in the places of introduction of formulas $\neg F$, ... from the left column. \square

4.2. Cutelimination Theorem

If $(R, \alpha, r1 + 1, r2) \vdash S$ then $(R, 2^{\alpha}, r1, r2) \vdash S$.

Proof is by induction on α .

If S is an axiom then the assertion is trivial.

If S is the conclusion of mathematical or equality rule then the assertion follows from the inductive hypothesis by the definition of

height.

If S is the conclusion of any rule except cut of rank r1, mathematical or equality rules then by the induction hypothesis for the premises of that rule $(R, 2^{\alpha_i}, r1, r2) \vdash$ holds for some $\alpha_i < \alpha$. Hence $(R, \sup_i (2^{\alpha_i} + +1), r1, r1) \vdash$ holds for the conclusion. The assertion follows from the fact that $\sup_i (2^{\alpha_i} + 1) \le 2^{\alpha}$.

If S is the conclusion of a cut of rank r1 then by the induction hypothesis $(R, 2^{\alpha_l}, r1, r2) \vdash \text{holds}$ for its premises for some $\alpha_i < \alpha$, i = 1, 2. By the previous Lemma $(R, 2^{\alpha_1} + 2^{\alpha_2}, r1, r2) \vdash \text{holds}$ for the conclusion. The assertion follows from the fact that $2^{\alpha_1} + 2^{\alpha_2} \le 2^{\alpha}$. \square

4.3. Lemma (substitution for an epsilon-term)

If $(R, \alpha, r+1, r) \vdash F[\epsilon XFX], \Gamma \rightarrow \Theta$, rank $(\epsilon XFX) > r$, $\Gamma \rightarrow \Theta$ contains no ϵXFX and quasiterms congruent with ϵXFX which are not terms, and T is an arithmetical 1-term of rank $\leq R$ or a free variable then $(R, \alpha, r+1, r) \vdash FT, \Gamma \rightarrow \Theta$.

Proof. Let $d(R, \alpha, r+1, r) \vdash F[\epsilon XFX], \Gamma \rightarrow \Theta$. Condition $d(R, \alpha, r+1, r) \vdash$ implies that there are no cut-epsilon-rules whose main formulas (terms) contain epsilon-quasiterms congruent with ϵXFX in d. It means that there are no epsilon-quasiterms congruent with ϵXFX which are not terms in d at all, and all occurrences of ϵXFX in d are predecessors of ϵXFX from the formula $F[\epsilon XFX]$ shown explicitly.

Thus substitution of T for εXFX preserves all rules of inference except

axioms and does not change formulas from Γ , Θ . Sequents

T(t), $\Delta \to \Lambda$, T(t) which replace axioms are cut-epsilon-free, derived in a standard way. \square

4.4. Epsilon-elimination Theorem

If $(R, \alpha, r+1, r+1) + \Gamma \rightarrow \Theta$ and for each occurrence of an epsilonquasiterm ϵXFX of rank > r in $\Gamma \to \Theta$ there is a formula $F[\epsilon XFX]$ in Γ then $(R, \alpha, r+1, r) + \Gamma \to \Theta$.

Proof is by induction on a.

If $\Gamma \to \Theta$ is an axiom then the assertion is trivial.

If $\Gamma \to \Theta$ is the conclusion of any other rule except an epsilon-rule of rank r+1 then the assertion follows immediately from the induction hypothesis.

Suppose that $\Gamma \to \Theta$ is the conclusion of an epsilon-rule with main

term εXFX of rank r+1.

If εXFX occurs in $\Gamma \to \Theta$ then $\Gamma \to \Theta$ can be presented in the form $F[\varepsilon XFX], \Gamma' \to \Theta$. Hence the right premise of this epsilon-rule is $F[\varepsilon XFX], F[\varepsilon XFX], \Gamma' \to \Theta$ and by the induction hypothesis $(R, \alpha_1, r+1, r+1)$ r) + holds for it for some $\alpha_1 < \alpha$. Thus by contraction 3.3 $(R, \alpha, r+1, \alpha, r+1)$

 $r) + \Gamma \rightarrow \Theta$.

If εXFX does not occur in $\Gamma \to \Theta$ then by the induction hypothesis $(R, \alpha_1, r+1, r) \vdash \Gamma \to \Theta, FT$ for arithmetical T of rank $\leqslant R$ or a free variable and $(R, \alpha_2, r+1, r) \vdash F[\varepsilon XFX], \Gamma \to \Theta$ for some $\alpha_1, \alpha_2 < \alpha$. By Lemma 4.3 $(R, \alpha_2, r+1, r) \vdash FT, \Gamma \to \Theta$. Since rank $(FT) < \operatorname{rank}(\varepsilon XFX) = r+1$, we have $(R, \alpha, r+1, r) \vdash \Gamma \to \Theta$. \square Cutelimination Theorem

4.5. Normalization Theorem of submit vd at 10019

If $(R, \alpha, r, r) \vdash S$ and $\varepsilon R - rank(S) = R$ then $(R, 2^{\alpha}, 0, R) \vdash S$. **Proof.** If $(R, \alpha, r+1, r+1) \vdash S$ for R < r+1 then by Epsilon-elimination Theorem $(R, \alpha, r+1, r) \vdash S$ and by Cutelimination Theorem $(R, 2^{\alpha}, r, r) \vdash S$. If $(R, \alpha, r+1, R) \vdash S$ then by Cutelimination Theorem $(R, 2^{\alpha}, r, R) + S.$

Applying this argument r times we obtain $(R, 2^{\alpha}_{r}, 0, \mathbb{R}) + S$. \square

If S is the conclusion expression 3.4.4 of then by the induction hypothesis $(R, 2^{\alpha}, r_1, r_2) = 0$ hypothesis $(R, 2^{\alpha}, r_1, r_2) = 0$ hypothesis $(R, 2^{\alpha}, r_1, r_2) = 0$

If a sequent S is derivable in $AA\varepsilon$ then $(R, \beta, 0, R) \vdash S$ for some integer R, ordinal $\beta < \varepsilon_0$ and $R = \varepsilon R - \text{rank}(S)$.

Immediate from Embedding Lemma 1.8 and Normalization Theo-

rem 4.5. 4 (mas)-nollege as for normalizable smms Jack

4.7. Corollary

If an epsilon-free sequent is derivable in AAE then it is cut-epsilonfree derivable in AAwe. Immediate from Corollary 4.6.

4.8. Corollary about consistency

AAE is consistent. Immediate from Corollary 4.7.

4.9. Corollary. Herbrand's theorem

If $\exists xFx$ is derivable in AA_{ε} for propositional F then $Fn_1 \vee Fn_2 \vee \ldots \vee Fn_k$ is derivable for some numerals n_1, n_2, \ldots, n_k .

Proof. Let d be a derivation of $\exists xFx$ in $AA\varepsilon$. Then by Corollary 4.7 $\exists xFx$ is cut-epsilon-free derivable in $AA\omega\varepsilon$. Since the latter derivation contains no ω-rules, it is a cutfree derivation in the first order predicate calculus. EXPANSIONS IN BANACH SPACES of betatestal

Eesti Teaduste Akadeemia Kuben Sanaana References, Estonian Akadeemia tee the Countries (Estonia)

- 1. Минц Г. Изв. АН СССР. Сер. матем., 1989, 32, 3, 587—605.
- 2. Simpson, S. Second Order Arithmetic and the Epsilon-Calculus. Talk at the University of Illinois, Urbana, March 1992.
- 3. Hilbert, D., Bernays, P. Grundlagen der Mathematik. II. Springer, 1970.
- 4. Leisenring, A. Mathematical Logic and Hilbert's Epsilon-Symbol. New York, 1969.
- 5. Минц Г. Зап. науч. семинаров ЛОМИ, 1975, 49, 67—122.
- 6. Tupailo, S. Research Report CS 44/92. Institute of Cybernetics, Estonian Acad. Sci., Tallinn, 1992.
- 7. Feferman, S. In: Handbook of Mathematical Logic, Amsterdam, 1977, 913-971.
- 8. Schwichtenberg, H. In: Handbook of Mathematical Logic, Amsterdam, 1977.
- 9. Schütte, K. Proof Theory. Springer, 1977. 1991 Mathematics subject classifications: 42C15, 42A45, with mi fluxer desired and

NORMALISEERIMINE HILBERTI EPSILONSÜMBOLIGA ARITMEETILISE ANALÜÜSI PUHUL

Sergei TUPAILO

On esitatud teatavat valikuprintsiipi esitava Hilberti epsilonaksioomiga täiendatud aritmeetilise analüüsi normaliseeritavuse tõestus. Tõestamisel on kasutatud transfiniitset induktsiooni kuni epsilon—0-ni.

НОРМАЛИЗАЦИЯ ДЛЯ АРИФМЕТИЧЕСКОГО АНАЛИЗА с гильбертовским эпсилон-символом

Сергей ТУПАЙЛО Charles in Banach spaces

Приведено доказательство нормализуемости для арифметики второго порядка с арифметическим свертыванием и Гильбертовской эпсилонаксиомой, представляющей некоторый принцип выбора. Доказательство проведено индукцией до эпсилон-0.