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MASSLESS INTEGER-HELICITY GAUGE FIELDS

Using the formalism of spinprojectors the general theory of massless integer-
helicity gauge fields corresponding to the Pauli-Fierz program is analysed. The general
realizations of helicities 2, 3 and 4 for symmetrical tensor fields are considered.

1. Introduction

The study of the Lagrangian formulation for arbitrary spin was start-
ed by M. Fierz and W. Pauli [']. The Pauli-Fierz program implied that
all field equations and subsidiary conditions should be derived from an
action principle. C. Fronsdal [?] and J. Fang and C. Fronsdal [?]
obtained the massless Lagrangians for arbitrary helicity, using the
symmetrical tensors A" to describe helicity A=n, and symmetrical
tensor-bispinors %~ to describe helicity A=n-1/2. The vierbein

description of massless gauge fields was proposed by C. Aragone and
S. Deser [*], and M. A. Vasiliev [?]. However, in the higher-helicity
case, the proposed wave equations and Lagrangians do not follow the
Pauli-Fierz program, since there exists too many additional restrictions
on fields and gauge parameters.

B. de Wit and D. Z. Freedman [] used a hierarchy of generalized
Christoffel symbols with simple gauge transformation properties to
demonstrate the systematics of higher-helicity gauge fields. The wave
equations are expressed simply in terms of generalized Christoffel
symbols. Also, the method of de Wit and Freedman works in the case when
the algebraic constraints on fields and gauge parameters are added. The
method which reverses the analysis of B. de Wit and D. Z. Freedman
was discussed in [7°].

The question whether consistent theories exist describing non-trivial
interactions of massless higher-helicity fields among themselves and
with the lower-spin fields, has become one of the principial questions of
the modern field theory. The considerable progress in the description of
some higher-spin interactions has been achieved in ['°-!3]. Due to the
universality of the gravitational interaction, the question of the existence
of a consistent gravitational interaction of massless fields is of great
importance. A cubic interaction of all massless higher-helicity fields was
recently constructed in [']. This interaction incorporates gravitational
interactions of massless higher-helicity fields.
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in the search for consistent interactions of massless gauge fields
correct wave equations and Lagrangians are needed. In this paper we
give a general form of arbitrary-helicity wave equations using_ the for-
malism of spin-projection operators in the form given in ['*-17]. The
formalism of spin-projectors was previously developed in ['%!°]. Our
projection operators are connected with the fixed representations of the
Lorentz group and have fixed non-localities which uniquely depend on
the representations used. This fact allows to construct the operators of
needed order without the knowledge of explicit expressions of spin-
projectors and give the general structure of arbitrary-helicity wave
equations. Likewise, it is possible to verify that the higher-helicity wave
equations and Lagrangians must have the proposed structure.

In [%] it was stated that the construction of spin-projectors becomes
increasingly complicated, and for that reason it is not applicable in the
higher-helicity case. It is in some sense true, but the calculation of spin-
projectors is rather a technical than a principal problem. We think that
the formalism of spin-projectors is necessary in the case of higher-spin
fields too, since it allows to obtain correct general expressions of field
equations, bilinear forms and Lagrangians.

2. Helicity A=n Lagrangian wave equations

The helicity A=n (n>2) is described by two irreducible Lorentz

fields ¢, and ; which correspond to the representations l=(%n, —;-n)

1
and 2=(—2—(n—2), %(n—2)). The gauge parameter ez corresponds

to the irreducible representation 3=(2i (n—1), —; (n—1) )

The general gauge-invariant wave equation is the following [*'] —

Py aPn)(ipn)
D( =) 2.1
bPy;  cPgs ! M\ ik
where
n n—2
Pu=3lan(s)Ps,, Pa= 3 ax(s)Ps,,

s=0 s=0

(2.2)

n—2 n—2
P;2=Ea|2(s)P72, P21= 2012(3)1);1-

s=0 s=0

le. are spin-projectors satisfying Pfl,Pz"=6jk 8., P5,. The coefficients
ai/(S) are

(nts) (n—s—1)

a(s)=— = s=0, ..., n,
aza(s) = ("’;(32);'_‘_4'13)"’1) BB T T it

(1.|2(S) =

[ (n+s) (n—s) (n+s+1)(n—s—1) ]1/2 sl Yy
2(2n—1) (2n—2) ) A B :



Eq. (2.1) is gauge-invariant iff det B,=0 (s=0, ..., n—2) [2],
where Bs are the reduced spin-matrices formed from the parameters a, b

and ¢, and a;;(s). The coefficients a; (s) in (2.3) are so chosen that while
demanding

n—1
n

ab=—

G (2.4)

the conditions det ;=0 are fulfilled.
The gauge transformation of Eq. (2.1) is the following —

P3es

na n 84

where « is some nonzero coefficient, and

Pi3= nz_llals(s)Psm’ Pogzs nz—?a%(s)P;a’
§=0 S%O (26)
- 1) e ,, il )uli®
a13(8)=[ (n 3)2(’;1+S+ ) ] . als) = (n+82)(fln_ 1S) DI i

The source constraint Q2/=0 is given by the operator

= —1 2n — 1
Q=70 ( Py, nnb V n Py ) : (2.7)
where
n~1 n—2
Pyi= 3 as(s) Py, Pa= X axn(s)P;,. (2.8)
s=0 s=0

Our operators P;; are so constructed that OO Py, O Pﬁ O P,y and
OO Py, are second-order differential operators, YO Pis, YO Pes, YO Psy,

and YO Ps, are first-order differential operators. The gauge invariance
and source constraint follow from the operator identities nQ¢=0 and
Q#n=0, where (2.1) is denoted by mp=0, the gauge transformation
(2.5) by 8p=0Q¢%e and the source constraint by Q2/=0. The derivation
of source constraints from Q#w=0 was previously discussed in ['3 7 2],

In our approach we first derive the wave equation, then obtain the
invariant bilinear form consistent with a given equation, and the last
step consists in writing down the corresponding Lagrangian. As we
shall see below, in the massless case the Lagrangian does not determine
the equation uniquely, it must be coupled with the knowledge of invariant
bilinear form.

Eq. (2.1) is consistent with the following invariant bilinear form —

fw=wTAmp1+—:- ¢3A22w25¢1¢1+—1‘;— Poe, (2.9)

272



wheré
Au=t1 —tr=ip 4 (—1)"8S,,

A22=t"2;2_tg2—3+ s +‘(_1),,tg2’ (2.10)

and A =P‘,.”al=0 are noncovariant spin-projectors.

The Lagrangian is obtained after the partial integration of the
following expression —
na?

— 1 WPy, (2.11)

L=1I711'—’1|\|31+a (‘l~31512¢2+1|~321_’21¢1) o

where P;j=0 P;;. Variation of (2.11) with respect to the conjugated
puodniofs i dl =k o
wave function \p=(w,—b—\pg) gives Eq. (2.1).

From (2.11) it follows that the Lagrangian depends only on one par-
ameter a. The equations corresponding to the same gauge transformation
but of different source constraints and bilinear forms, are obtained from
the same Lagrangian. For that reason the Lagrangian (2.11) is invariant
under the following transformation of parameters —

a—>a, b—->unb, - c—>uC, (2.12)

where %<0 is an arbitrary coefficient. The transformation (2:12) is
equivalent to the following redefinition of Eq. (2.1). If Eq. (2.1) is
denoted by W=0, then the transformation (2.12) leads to the equation

W4 (x — 1) T, W=0, (2.13)

where IT,, is the Lorentz projector which extracts the representation 4
The other transformation of parameters

b—>b, a—>wua, %, (2.14)

where x50 is an arbitrary coefficient, extracts the subset of equations
corresponding to the same source constraint. This transformation is
equivalent to the following field redefinition

P =Pt (% — 1) Hap. (2.15)

In F. A. Berends et al. ['¥] and F. A. Berends and J. C. J. M. van.
Reisen ['], the redefinition of field variables (2.15) is used to obtain
the Lagrangian corresponding to a given wave equation. That procedure
is indeed possible, because the Lagrangian can be obtained from the
equation corresponding to the symmetrical choice of parameters (a=b)

by the multiplication to conjugated wave function P= (P, y2) in its
simplest form. The field redefinition corresponds to x=b/a.

3. Symmetrical realization of a gauge field

The integer-helicity 2=n is usually described by the symmetrical
tensor field A%c#.. The field A*-#. corresponds to the representation

(Ln tn)o(t w2, 3 w-2)e(5 -9, )
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1
...®(0,0) (or (7, —-21-)) The gauge invariant Eq. (2.1) uses only
two first representations — 1 and 2. The components of A®c-#. that

correspond to the lower representations (%(n—li),—;-(n—ll)) T

ooy BN (or (%, —;—» are free. Therefore Eq. (2.1) for h*-#. has
a form
Py, aPy 0\ /1
O (bP;u cPy 0 (1|J2 =0, (31)
0 0 0/\va

where the field . corresponds to all lower representations. Since the
lower representations are free, Eq. (3.1) admits an extra gauge in-
variance &y =1a.

Concerning the additional restrictions, such as the doubletraceless-
ness hf%p.ts-ta=0 (n==4), it should be mentioned that these restrictions
are not needed. The existence of additional restrictions means that the
equation for A*--#. has not the needed structure (3.1) and contains oper-
ators Py, and Pg., which connect lower representations. The wave
equation for A*-#. has, in that case, the structure

Py aPy, O Y1
O 6Py cPyy dPs, P2 =1l (32)
0 0 ePaa \l:a

Eq. (3.2) is gauge invariant with respect to the gauge transformation
(2.7), yet it has no consistent bilinear form or Lagrangian. In order to
have the consistent bilinear form the term dPsy.np. must be excluded. The
extra gauge invariance &yp=1, needs the elimination of ePaa\a. There-
fore the equation with additional restrictions does not have the right
structure and should be modified.

The massless theories proposed so far do not have the needed struc-
ture (3.1). From the well-known theories, the one given in [?] corre-
sponds to d=0, es<0. Now, there exists a correct Lagrangian theory, but
with lower spins. The theory givenin [®] corresponds to d5<0, e=0. There
will be no Lagrangians if we start directly from Eq. (3.2). In both cases
the additional restriction Af%s"s#.=0 is needed to eliminate superfluous
representations in (3.2).

Similar considerations are applicable in the case of gauge parameter
gt too. The gauge parameter e**. corresponds to the repre-

: i T Ay et ) ( 1 % 8 T )
sentation (2 (n—1), 3 (n—1))& 5 (n 3),‘—9— (n—3)) ©...
...EB(—;—-, -—12—) (or (0,0)). If the gauge transformation is presented

in the correct form (2.5), only the first representation (%(n—l),

-;—(n—l)) will be used and there will be no need for additional

restrictions. In theories used so far the gauge transformation has a form
Oht-tn= 3] Ogh:-ts, where efpt-ta=0 (n==3). The latter restriction
means that the gauge transformation does not have the right form (2.5).
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4, Vierbein realization of a gauge field

In the vierbein case [*], the tensor field At is used. The vierbein
field is symmetrical in indices va, ..., va, and it satisfies AwVe-Vav_=0.
v
The gauge transformation is SR Ve-¥a==0OMe%Va, where the gauge par-
ameter satisfies evz-~-7,.-;v_7=0.

In the higher-helicity case a vierbein realization is more economical
since a vierbein field corresponds to the representation (-—;-n, -;—n) %)

1
@(—é-(n—2), l(n—2))€9(f2l—~n, L(n—Q))@(QL (n—2), -21-11).
The helicity A=n is described with the help of two representations —
1 and 2. The corresponding equation has a general structure (3.1),

where 1, corresponds to the representation (—;—n —21— (n—2) ) 5

@(—;—(n—Q), —;—-n) Therefore, the vierbein realization of helicity

2=n is equivalent to the symmetrical one.
It should be mentioned that the correct form (3.1) does not follow

directly from the usually demanded gauge transformation Ot Ye =

—gwev-v, If the components corresponding to . are not eliminated,
the lower spins are present. In [*] it is demonstrated that . allows a
set of gauge-invariant wave equations describing A=0.

In the lollowing sections we consider the equations for helicities 2, 3
and 4 in the symmetrical realization and we illustrate the general cons-
iderations given in previous sections.

5. Helicity 2

The massive spin 2 case in a form presented here was analysed in
['6]. The massless A=2 equation can be obtained from the massive one
by 4setting m=0 and demanding that the parameters a, b and ¢ satisfy
(24).

The general gauge invariant equation for A" is the following —

D h“’v o d“dphpv S S 0"()php“+ ('—!—' — ’i___—' ) 0“0“}1%—]—
2 73
- 1 b
ik (""—"T)'fl""apachp"——l‘(i-i‘ab— oD )nuv O hep=0.  (5.1)
2 Y3 2.4 2Y3

Cpoosing a=72 we obtain, from (2.5), the following gauge transiorm-
ation

Ohuv=0Mev+ Ve — %( ! +—;/Z—) n*0pe® (5.2

and from (2.7) the source constraint

L (1+%)
a B e — _—_— v =
e — — (143 ) @I =0, (5.3)
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The invariant bilinear form is
Fhiv= tit by — (1 =) g 5
ny g 1y ""T ‘_'B— uit v, ( 4)
giving the following Lagrangian

L == —aph+uv0phl'w+2dph+pvaah0v+ ( e e ——) (aph+“uaahpd+
3 2

FORR @) +—m (—4-+a2 = W ) 0P, phY,. (5.5)

Eq. (5.1) admits the covariant gauge

g — = (1—22 ) ot =o. (5.6)
4 V3

Depending on the choice of either a and b, we obtain the particular
examples.
1. The linearised Einstein equation used in supergravity [?*] corre-

sponds to a=b=—Y}3/2
[ h#Y — GRApho¥ — OVOphek 4 ORIYRPy 410 0sheo — v O hep=0. (5.7)

The given Eq. (5.7) has the simplest gauge transformatlon and source
constraint

SV ==rev4-aVeH, O JW=0, (5.8)
(5.6) gives the de Donder gauge

Auhmy ——-;—th"u=0. (5.9)

2. In the relativistic theory of gravitation [*?7], the equation
corresponding to a=b=13/2 is used —

O h"v—()ﬂdphm‘—avaphw——;—nw O h?p==0. (5.10)
The gauge transformation and source constraint are the following
OhMY=0Me¥+- Vel — nHV0pe?,  OpJH¥ — —;—— avjr,=0. (8.11)

Eq. (5.10) has the simplest gauge
Ouh*v=0. (5.12)

This particular equation must be used in the covariant theory of
closed bose strings [?] where the field h* satisfying d,h*¥=0 is needed.
Here the condition duh*¥=0 does not follow from an equation but on the
choice of covariant gauge.

This Section we conclude with two remarks:
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(1). In the symmetrical case (a=b), we have the simplest conju-
gated wave function hyy = ht,, in the nonsymmetrical case huy =

=h+uv—T(l—a/b)h+Ppnuv. For that reason one must be careful in

considering the massless limit of massive spin-2 wave equations. The
single-particle spin-2 equation corresponds to a nonsymmetrical choice
of paramete]rs, as a and b must satisfy, in addition to (2.4), ab=
=—1/4 ['¢].

(2). In %] the following A=2 equation was proposed

O AnY — QMO APy — ¥ hoh +OnA¥hey=0. (5.13)

Eq. (5.13) corresponds to the choice of parameters a=—Y3/2, b=Y3/2.
Eq. (5.13) has the gauge transformation (5.8) and source constraint
(5.11). The linearised Einstein Eq. (5.7), corresponding to the same
gauge transformation as (5.13),isobtained from (5.13) via the transform-
ation (2.15) where x=—1

Wuv—-;-nuvwm,;o. (5.14)

6. Helicity 3

The massless A=3 case is analysed similarly to the A=2 case. The
new moment is that the gauge parameter e*v is usually constrained to
¢fp=0, but here we give the gauge transformation in the form (2.5),
and for that reason the constraint e?;=0 is not needed.

The general gauge-invariant equation for Awba#, is the following [*] —

) S OMOoMhMP -+

s

O Ardabs — 37 040 phersts - (
37

+(—1‘ = "l.""_‘) 2 N*i00ohPors
(6.1)
+(2_ 22 ) o syt
65 4 9
+‘(a+b” ab b 1
375 20 18

) 2 0*mHat0ph?s=0,

where 3 denotes the sum of terms symmetrical in free indices i, p, ps.
The general gauge transformation is

Ot =3 OMighshts — _:13_ ( 1+~2;/T—5—) 37 0Pt —
L (12 ) Sorpme, 62
and the general source constraint is |
apjpu,u.__:.i_( l+-2—3};7§—) 37 guaJuep, — :; (1 -—--%/;f-)nuzu.dpﬁ%: %, (619)
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The invariant bilinear form

ilu.u‘u.h""‘*”‘= h+u-uzuahu‘"‘"'+%( 1— '%’) h+u|pphuloq (64)

leads to the Lagrangian
L =—0Phty,yuu,Opht#:¥s+30° Bt o, OchWatts+-

* ("'3— i ) (0Ph oo 00 AMsh - Qphti 0 hPors) -

Y5
2 2 ,
+( 5 3: g Vag ) oot aphst (6.5)
2

Eq. (6.1) admits the covariant gauge

1 3754
Ohbtts — — ( 1+—Yr) -
o %( 1_%) 37 Omhno,=0. (6.6)

Now we demonstrate that the gauge transformation (6.2) corresponds
- F — —_
to the vrepresentation 3= (1,1). If we denote e3**: by et we have

el = ghy, — % nMitael,. (6.7)

The gauge transformation (6.2) may be rewritten in the form
Y — zau.e_uzu,——;-( et 23‘;5 ) 7 i ePh. (6.8)

This form of gauge transformation is useful, since it indicates that the
simplest gauge transformation is dAMM:Hs= 3 onetis and corresponds to

the choice a=-—275/3. The symmetrical choice a=b=—27Y5/3 gives the
simplest source constraint and bilinear form.

Due to the complicated form of the general massless A=3 wave
equation and Lagrangian only special cases were previously treated. The
symmetrical choice a=b=—2Y5/3 gives the Lagrangian given by
C. Fri)ﬁrisdal [?]. The A=3 equation given by B. de Wit and D. Z. Freed-
man

0 Akidaits — 37 0M0phPaits - 37 GriOMshioy =0 (6.9)

corresponds to a=—275/3 and b=Y5/3. The equation corresponding to

a=b=—275/3 can be obtained from (6.9) via the transformation (2.15)
where x=—2

1
Wi pgn, 7 2 n"’;p‘: W"’;pp= 0. (6. 1 0)
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7. Helicity 4

[30]The general gauge-invariant equation for A*wb is the following

O At — 37 Giigphomsbat ( 1— — ~-9_:—) G TR
4 V7

1 b
+ AT T uluzd 0 hpou,u‘
( o ) 3 wpdy0ghooninct.

+ ( a+b A~ o — : ) O Z‘I]ut”xhp’n”tpp—i—’

8Yy7 6  -32

+( 1 {l a+f iy ab )Eduxnuzuaaphpllwa_i_ (71)
6  4y7 21
( ab S o - } b__ b l ) 2 nuluznulu’lapdchponu"{“
21 1277 4T 16

( et e ) 37 Qb9 g

42 7 8Y7 24v7 32

- 1 __a_ ‘l_ )anuu,nu.u.hpu
T - 24Y7
The general gauge transformation is
ORI = 37 Gtghatsita —_QIT ( = 94}:17 ) 37 Ormtataghd, —

3v7

( ) 2 (% nu.uzapgou.u. — —;— nu‘uznu:unapépoa ) . (72)

and the general source constraint is

Opl Pttty — : (l AN ) Sty Jono, —

24 4b
. 5 V7 3 1
14— ) 2\ O HikPp — - O] Py ) (7.3)
The invariant bilinear form
hﬂ-uauxuqhu‘"‘"'"‘z h+l‘-|l‘zl‘~al-h hl-l,l»l,ﬂ,l-". i -43_ ( 1 — %) h+u|uzpph"‘u’oa (74)
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leads to the Lagrangian
L =—0°htypupnOph* 4 40P It OohoVibtset - -

+( Gf ___3_) (0°h o @ AIs O 0 D hPWs) -
V7 2 : : .
2
3 (fa__ﬂ_i) 0PIt ahWs (7.5)
7 V7 4
+ (i P ‘"‘i— ] —"‘) (aph+nuhaahpoup.+dph+po"uaahukul) +
16 2Y7 7
o (a2_ 3a 15 ) 0PIt 4O phiis ,v_]_

2Y7 16

2
( a __3a i 3 )aph+mukaphuvﬂ\"

47 14 32

The general transformation of parameters (2.12) Jeads to the redefi-
nition of Eq. (7.1)
—1

wWik, =0, (7.6)

Wi g - 37 e Whme, x;ﬁ 4

where (7.1) is denoted by Wht.mk=0.
Due to the complicated form of the general massless A=4 theory,
only special cases were previously treated. In [?] the Lagrangian

corresponds to a=—377/4, but due to the additional restriction h#9,=0
some terms of the correct Lagranglan (7.5) are absent. .The correct

theory corresponding to a=b=—377/4 was first derived, in [*].
[2°] the equation corresponding to the same  symmetrical choice was
treated, yet the term [0 ntmMheo,; has a wrong coefficient.
The A==4 equation given in [€]
O Awbaihy — 37010 hPHMsH+- 2 OMgM:hisiP =0 : {7:7)

is invariant with respect to the gauge transformation  §hmMamb =

= 3 Omehatite if gl is restricted to en?p=0. As we have mentioned
above, Eq. (7.7) does not admit any consistent bilinear form and is not
derivable from a Lagrangian. Eq. (7.7) is not invariant with respect to
the gauge transformation (7.2). In [*'] Eq. (7.7) is modified and-it leads
to the theory which corresponds to a=—377/4, b=77/4.

We conclude this section with the remark on the hierarchy of “gener-
alized Christoffel symbols given in [®]. This particular method works
well in the A=2 and A=3 cases, but in the A=>4 case it needs some
improvement, because the equations of motion derived via the method of
generalized Christoffel symbols contain superfluous representations.
Moreover, they do not add to the Lagrangian theory Also, the redefini-
tion of field equation proposed in [6] ,

W“|”zu’aun —— -? 2 ‘I‘I“u“:W”‘x"tpp———O .’ (7 7)
is not in accordance with (7.6). In the x=—3 case, (7 6) gives the

transformation between the equations corresponding to a=b=-—3y7/4
and a=—3Y7/4, b=Y7/4, :
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8. Conclusions

In this paper a éeneral‘ form of_arbitrary;helicity boson gauge-

invariant wave equations is given. The proposed general form follows
the program of M. Fierz and W. Pauli ['],. demanding that all field
equations and subsidiary conditions should be derived from an action
principle. It appears that the higher-helicity (A==4) massless wave
equations and Lagrangians should be modified to have the needed

structure.

The proposed form of equations becomes important in the interacting

field case, since the construction of interaction Lagrangians needs the
knowledge of bilinear form consistent with a given equation.

P 00 XN D0 ke BNy
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Rein-Karl LOIDE, Iimar OTS, Rein SAAR
TAISARVULISE SPIRAALSUSEGA MASSITUD KALIBRATSIOONIVALJAD

Kasutades spinniprojektorite formalismi on analiiiisitud Pauli-Fierzi programmile
vastavat tdisarvulise spiraalsusega massitute kalibratsioonivédljade iildist teooriat. On
vaadatud spiraalsuste 2, 3 ja 4 {ildist realisatsiooni siimmeetriliste tensorviljadega.

Peiin-Kapa JIOHAE, Haomap OTC, Peiin CAAP
BE3MACCOBBIE KAJIHBPOBOYHBIE NMOJISA LEJMOYHCIAEHHOA CNUPAJIBHOCTH

C ucnoab3oBaHneM (opMajH3Ma CHHHIPOEKTOPOB MNpPOBeleH aHaau3 oOmeli TeopHH
Ge3maccoBbiX KaJHOPOBOYHBIX ToOJIef  IeJOYHCJIEHHOH CNHPaJbHOCTH, COOTBETCTBYOLICH
nporpamme Ilayau—®upua. PaccMorpena obumas peanusauns cnupaabHocteid 2, 3 u 4 ads
CHMMETPHYHBIX TEH30PHLIX MOJeH,
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