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FREQUENCIES OF RESONANCE AMPLIFICATION OF THE

PERIPHERAL WAVES AT SCATTERING OF AN OBLIQUELY

INCIDENT PLANE ACOUSTIC WAVE BY A FINITE LENGTH
CIRCULAR-CYLINDRICAL SHELL

(Presented by I. Engelbrecht)

The resonance frequencies xn»(e) of the peripheral waves generated in an empty
shell of infinite length by an obliquely incident plane acoustic wave are found via the
procedure of the resonance scattering theory. The frequencies of spatial amplification
¥m(a) are found for the case of a finite length shell simply supported on the ends.
The points of intersection of these two families of curves, xa(a) and xm(a), give the
frequencies of the resonance amplification. At these frequencies the n-th angular res-
onance of the peripheral wave occurs, and exactly m wave half-lengths fit the length of
the shell. With sufficient accuracy the frequencies of the resonance amplification xam
can be found for every peripheral wave generated in the shell from a simple model
problem on waves propagating in a plane elastic layer.

Let us consider a steady-state problem of scattering of an obliquely
incident plane acoustic wave by a circular-cylindrical shell with finite
length 2L embedded into a liquid. The shell is referred to the cylindrical
coordinate system r, 0, . The ¢ axis coincides with the longitudinal axis
of the shell. The ends of the shell are situated at {==L and are simply
supported. The shell is considered to be empty. The direction of pro-
pagation of the incident wave makes an angle o with the normal to the
longitudinal axis of the shell. The frequencies of the resonance amplifi-
cation should be found. We shall use the following notations: x=ka is
the wave radius, k is the wave number in the ambient liquid, a is the
outer radius of the shell, index n denotes the ordinal number of the
angular resonance of the peripheral wave, and index m defines the num-
ber of half-waves of the peripheral wave on the full length 2L of the
shell.

We propose to solve the problem in two stages. In the first stage the
problem of resonance frequencies of an infinite shell should be considered
while in the second stage the problem on frequencies of resonance ampli-
fication for the shell of finite length is to be solved. The resonance
frequencies of the infinite shell have been investigated previously ['] and
therefore here only the results of the computation are presented.

Resonance frequencies of a shell with infinite length

As it is known, the resonance frequencies of the peripheral (running)
waves coincide with those of modal resonances. Here we have used the
procedure of the resonance scattering theory to obtain the frequencies of
modal resonances. The computation has been carried out for the case of
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aluminium shell immersed in water with the following physical par-
ameters

01=2790 kg/m?, ¢,=6380 m/s, ¢;=3100 m/s,
0=1000 kg/m3, c¢=1470 m/s, h=1—0b/a=1/32, Lja=4. (1)
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Fig. 1. The frequencies of the resonance amplification of the Lamb-type peripheral

wave S,. The curves n=const (n=1—13) define the positions of the angular reso-

nances xn(a); the curves m=const (m=1—27) define the positions of the spatial

amplification xm(a); the points of intersection of both families of curves give the

frequencies of the resonance amplification xnm. The computation is carried out for the
case of aluminium shell immersed in water (h=1/32, L/a=4).
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Here the following notations are used: gy, ¢;, ¢; are the density, velocities
of longitudinal and transverse wave, respectively; o, ¢ are the density
and sound velocity of the ambient liquid; 2L, &, b are the full length of
the shell, its relative thickness and inner radius, respectively. The
frequency domain of computation is defined as

0<<x<<450, x=ka, k=w/c, (2)
where o is the circular frequency. The computational step size is li=

=10/256. The computations have been carried out with the same par-
ameters as in paper [!]. In the considered frequency range the following
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Fig. 2. The same as in Fig. 1 but for the Stoneley-type wave A(n=31 — 50, m=1—27).
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peripheral waves are generated in the shell: So,, A, A, Ty and T,. The
typical results of computation are presented in Figs. 1—5 by the families
of curves x,(a). The computations have been carried out for such n
values when the amplitudes of modal resonances of the peripheral waves
are large. It should be noted that for the A wave the modal resonances
with large amplitudes are generated only with n<<5, and the amplitudes
of modal resonances with 5<<n<30 are very small and the resonances
may be neglected. The Ty and T, waves cannot be generated for zero
angle of incidence (a=0), the relevant resonance f{requencies being
absent. As a rule, we have used acoustically rigid background with only
one exception: with 71<<n<<90 for the 7, wave the acoustically soft
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Fig. 3, The same as in Fig. 1 but for the shear wave To(n=1—20, m=1—27).
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background has been used. In this n domain the acoustically rigid back-
ground is not adequate: there is a minimum instead of a typical maxi-
mum on the resonance frequency

With fixed n, we shall define the dependence of the resonance
frequency on @ as x.(a). The resonance irequencies x.(a) have been
computed with one degree step on the angle of incidence. In order to
obtain a continuous dependence x.(a) we have used a cubic spline.
A check computation of the dependence x,(a) for the angles of incidence
situated on hali a degree values, has shown that the approximation of
the curve by a spline inserts an error less than the step size L. Thus the
error of the determination of the resonance frequency is never larger than
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Fig. 4. The same as in Fig. 1 but for the Lamb-type wave A;(n=1—20, m =
=95, 100, ..., 150),
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the step size I.. As the presented figures only illustrate the applied pro-
cedure, we did not try to reduce the chosen I, value.

The restriction a<<13° is caused by the used algorithm of the compu-
tation. With a>a.=arcsin(c/c;) the argument of the cylindrical
functions entering the elements of determinants from which the coeffi-
cient of the exact solution in the series form is found, becomes imagin-
ary, and the used procedure just does not work. Certainly, by the modi-
fication of the algorithm, as it is proposed in [?], the computation
can be continued for a>a.. We did not use this opportunity, because
with a increasing, the x.(a) values grow rapidly and therefore they can
fall into the x domain where the computations have not been carried out.
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Fig. 5. The same as in Fig. 1 but for the shear wave T;(n=71—90, m=20, 25, «44, 175).
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Frequencies of the resonance amplification for finite length shell

The peripheral waves generated in the shell reflect from its ends. For
the case of simply supported ends, from the boundary conditions we

obtain
exp (itksina)=0 at {==L. (3)

By equating the imaginary part in Eq. (3) to zero, we obtain the con-
dition of spatial amplification

m

( 2L ) %
—)sina
a

Here m is the number of hali-waves along the longitudinal axis of the
shell. d

The same condition can also be obtained from purely physical con-
siderations: the spatial resonance occurs when integer number of wave-
length fits the length of the shell [?]

by o Reshaing, i (Me=l,.2 3 - o) (5)
2L

The physical parameters of the shell do not enter the condition (4).
This condition does not depend on the type of the wave and only shows
the fact that the wave is successively reflected by the ends. Since the
attenuation of the peripheral waves, as a rule, is not very fast, the spatial
amplification can be observed. For small m values such amplification has
been detected in the experiment [2]. Here the problem is considered in the
ideal formulation — without any inner damping during the propagation.
The attenuation of the peripheral waves is caused only by the radiation
in the ambient liquid.

The points of intersection of two families of curves, namely x.(a) and
xm(a), define the frequencies of the resonance amplification xum. At these
frequencies n-th angular coincidence resonance and m-th spatial longi-
tudinal amplification occur.

B = (m==l, B;i85:5:): (4)

Approximation of the frequencies of resonance amplification for a
finite length shell

The computation of the families x.(a) for every peripheral wave is
very time consuming. As it was shown in ['], the resonance fre-
quencies x.(a) of the peripheral waves generated in the shell may be
approximated with sufficient accuracy by those of a wave propagating
in a plane layer (here we suppose that the relative impedance gc/oi¢; is
rather small, and the influence of the ambient liquid on the propagating
wave may be neglected). With fixed a and n, the approximate values of
the resonance frequencies of the Lamb-type peripheral waves S, and A4,
can be found from the Rayleigh-Lamb dispersion equations E=0 and
F=0, respectively (see [?], Eq. (29)), with y replaced by y. (see ['],
Egs. (15) and (16)). Here y. is the relative (divided by cs) phase velo-
city of the peripheral wave propagating on the middle surface of the shell.
In these equations the variable z, natural for the plane layer, is connected
with the wave radius x by the relation

nic
==2(<) x (6)
where
2=kd, ki=ofc:, 2d=a—0b. (7)
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Analogously, the approximate values of the resonance frequencies of
the Stoneley-type wave A can be found from the equation E(F-4y)+
+F(E4vy)=0 (see [%], Eq. (28)) with the replacement y by y.. In this
case one should take ay=1, which means that the phase velocity is found
on the outer surface of the shell.

The approximate values of the resonance frequencies of shear waves
Ty and T, are defined in [3] (see Egs. (18) and (19)).

For the waves S, T and A, which, in principle, could be generated
beginning from zero on x, the utilization of the model problem on waves
propagating in plane layer inserts a significant error with small n
values (n<<C10). Physically this can be explained by the fact that a long
peripheral wave propagating on the shell “feels” the curvature of the
shell, which is just absent in the model problem. With n increasing, the
wave becomes shorter and the influence of the curvature on it gradually
comes to naught. :

The waves A, and T, can be generated only beginning with the cut-
off frequency z=mn/2. On these waves the influence of the curvature of
the path is insignificant even for small n orders (n~1). Therefore for
these waves the resonance frequencies obtained from the model problems
on waves propagating in “dry” plane layer are very close to the exact
values. The error of the approximation of the resonance frequencies of
A, and T, waves diminishes with n increasing. For the T, wave with
1°<<a<<13° and 71<<n<<90 the error of the approximation of the reso-
nance frequency found from the model problem is smaller than one-two
step size Iy, i.e., the approximation gives the value of the resonance
frequency with the accuracy of four significant digits, and therefore the
approximate value practically does not differ from the exact one.

Let us denote the approximate value of the resonance frequency
found from the model problem z.(a). It, as the exact one, can be com-
puted for the angle of incidence with one—degree step. The cubic spline
could be used for the intermediate values of the angle of incidence. We
shall label the points of intersection of the curves x.(a) and xn(a) as
Fam. As the results of the computation have shown, for waves So, To, 4,
and T, and n>10 the difference between x.» and Z.. does not exceed
one-two step size I.. For the A wave this difference is somewhat bigger.
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Naum VEKSLER

RINGSILINDRILISE LOPLIKU PIKKUSEGA KOORIKU PERIFEERSETE
LAINETE RESONANTSSAGEDUSTE VOIMENDUSED KALDU LANGEVA
AKUSTILISE TASANDLAINE HAJUMISEL

On kirjeldatud akustilise tasandlaine poolt genereeritud perifeersete lainete reso-
nantssageduste voimenduse ligikaudse leidmise algoritmi. Nditena on toodud vette ase-
tatud alumiiniumist kooriku perifeersete lainete resonanissageduste arvutus,
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Haym BEKCJIEP

YACTOTbI YCUJIEHHUS PE3OHAHCOB NMEPUPEPHUYECKHX BOJIH
fiPM PACCESHUU HAKJIOHHO NMAJAIIIEN NJIOCKOH
AKYCTUYECKOH BOJIHbI KPYIrOBOH HUJAUHAPHUYECKON
OBOJIOYKOW KOHEYHOW NJIHWHBI

Usnoxen cnocof OTHICKAHHS yacTOT YCHJEHHS pe30HAHCOB mnepHpepHUecKHX BOJIH,
TelepHPOBAaHHEIX B 060JI0UKE IJIOCKOil aKycTHYecKoii BoJIHOH. OH COCTOHT M3 JBYX 3Tanos.
Ha nepsom 3Tane paccuuTHIBAIOTCS DPE30HAHCHblE YaCTOTHI GECKOHEYHO JUIHHHOH O6OJIOUKH.
Jlast MX OTHICKAHHSI HCMOJIB3YeTCsi MPOUeAypa pPe3oHaHCHOH Teopuu paccesnus. [as Kax-

noii nepHdepHyecKOH BOJIHBI CTPOHTCsS 3aBHCHMOCTh Xn(a) (34ech x==ka, k — BONHOBOE
YHCJO B XHAKOCTH, @ — HAPYXHbI pajgnyc oGOJIOYKH, @ — YroJ NajJeHHs, n — MNOpsA-
KOBBIi HOMEp YIJIOBOrO pe3oHaHca, Y, (@) — pesoHaHcHas gactora). Ha Bropom srame

paccMaTpHBaeTCsl NpOLECC MepeoTPaKeHHss neprdepHyecKHX BOJH OT CBOOOAHO ONEPTHIX
TOpioB 000si0ukH. M3 KpaeBbiX YCJOBHIl HA TOPIAX NOJYYaeTcsl YCJIOBHE YCHJICHHS DPe30-
HaHcoB. DH3NYECKM OHO COOTBETCTBYeT CHTYallHH, KOTJa Ha INOJHOil JJuHe 000J04KH
yKJaaAbBaeTcs leJoe YHCJHO M TOJYBOJH Kaxjaoil H3 nepudepuyeckux Boad. Jas o6o-
JIOUKH KOHEUHOH /[JIHHBl CTPOHTCS 3aBHCHMOCTH Xm (@), Touku nepeceueHHs ABYX CeMEHCTB
JuHHH (Xn (@) ¥ X, (0)) onpeaeAsioT NMOJOXKEHHS Pe30HAHCHBIX YacTOT YCHJIEHHS pe3o-
HAHCOB Xnm. Ha puc. 1—5 nokasaHsl 3TH yacToThl AJsi mepH(epHUecKHX BOJH, BO30OYX-
JIeHHBIX B aJIOMHHMEBOii 060Jo0uke, MOTPy:KeHHOH B BOAY. Ilpeasioxen crnoco6 nmpHOIHKEH-
HOTO ONpe/ieJIeHHsT YaCTOT Xpm.
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