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1. In stochastic programming problems ‘defined in n-dimensional
Euclidean space R" one often meets probability functions v(x)=
=P{f(x,E) <0} or v(x)=P{f(x,&) <0}, where ¢ is an s-dimensional
random parameter having density p(y), f: R"XRs—R' and P denotes
probability. For example, in problems with probability constraints it is
required that every constraint f(x, &) <<0, depending on a random vector
&, is satisfied with certain probability a; i.e. P{fi(x,&)<<0}=>a:. In
another problem it may happen that some probability function is desired
to be maximized or minimized. It is well known that it is rather compli-
cated to solve problems containing probability functions, because calculat-
ing values of the multiple integral v(x) and its derivatives is, as a rule,
very laborconsuming. If the distribution of & is not known then the
evaluation of these integrals is impossible altogether.

One way to construct methods for solving such problems is as follows:
probability functions are replaced everywhere in the optimization problem
thgough their statistical estimates and then the problem obtained is
solved.

In this paper, an asymptotically unbiased estimate for the probability
function v(x)=P{f(x, &) <<0} is constructed, and it is shown how this
estimate can be used to find an approximate local minimum point of v (x).

2. Let us consider the probability function v(x)=P{f(x,&)<<0}.
Assume that for every x the function f(x,y) is continuous in y. In this
case for every x f(x, &) is a random variable and it denotes by w(x,¢)=
=P{f(x, &) <t} its distribution function. Then v(x)=P{f(x, &) <<0}=
=w(x,0). To find some statistical estimate for v(x) one can use some
estimate constructed for a distribution function F(f). Let n be a random
variable and F(f) its distribution function. As an estimate of F(f) at
a given point ¢, it is natural to take the sample distribution function

P () = S H(E— ), (1)
f==]

where H(z)={ (1)’ jig,

ations on n-F*(¢) is a binomially distributed random variable, EF*({)=
=F(t) and var F”(t)=kLF(t)(l—F(t)). Therefore, as an estimate for
v (x) =P{f(x, &) <0}, we could choose

wu (1) =F* (0) = S H (—F (% 8)).
i=l

and v, i=1, 2, ..., k, are independent realiz-
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However, H(z) is not differentiable, and neither is we(x) differentiable
in x. Differentiability of the estimate is needed in order to establish con-
ditions guaranteeing 1) the existence of a local solution xj of the problem
containing estimates, and 2) that the distance between x; and a (local)

solution x* of the initial problem is sufficiently small. To obtain a differ-
entiable estimate for a distribution function F(t), we can rely on the
paper by R.-D. Reiss [']. Let M(z) be a continuously differentiable
distribution function. As an estimate for F(f) let us take the sum
P (t—-n,-)
E{i) e STM
¢ =g SM\ =),

where h. is a smoothing constant, limh,=0. As a particular case of
12

~»00

Lemma 2.1 ['] we have
Lemma 1. [}
400 +o0
Al. [ zM’'(2)dz<oo, [ 22M’(2)dz<oo,

00

A2. The distribution func_tion F(t) is twice differentiable at t and
sup | F”(t) | < oo, then
teR!

lim E G* (t) =F (1),

k—>o0
and

lim var Y& G* (t) =F () (1 = F (1)).

k—>00

Corollary. If _
A3. The distribution function of the random variable n=f(x, &)
satisfies the assumption A2, then '

o ( f(x, &) )
. S b uid N 2
ve ()=~ .E:M e (2)
is an asymptotically unbiased estimate of the probability function v(x)=
=P{f(x,&) <0} at x and
lim var Yk ve (x)=0v (x) (1 — v (x)).

k—>00

3. Consider now the unconstrained minimization problems

mi’rel v (x) ; (3)
and
mi,?..vk (x). ‘ (4)

As an approximate solution of (3), consider a solution of (4). In
connection with such approach two questions arise: 1) does the problem
(4) have a solution x} and 2) if it has then in what sense X, approxi-

mates a solution x* of (3)? ;

In order to find answers to these questions the Frechet’ differentiabi-
lity of v(x) is needed. Under certain conditions laid on f(x,y) the
function w(x,t)=P{f(x, &)<t} is differentiable as many times as
needed [2], and its first derivatives can be expressed through surface
integrals as follows: .
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’ 9 p(y)
W) (x,8)= ;{ I (% )1 dss,

’ e ' fx(x, y)
i o 1 s g

o’ (x) =1’ (x,0) =— —”%p(y)d&

where Si={y|f (x,y) =t} and S={y|f(x, y)=0} [*]. The results in [?]
enable us to find higher-order derivatives of v(x) and w(x,¢) as well.

Lemma 2. If - =5
A4. v(x) is twice differentiable in t, w(x,t) twice differentiable in x,
A5. w! (xt) and w” (x,t) are twice differentiable in t, ||w®) (x, 1)l

and ||[w® (x,1)| are bounded, then

’{EI;EU; (x)=v"(x)
and

lim Ev (x) =v"(x).

k—>o00

Proof. Due to (2) and Theorem 108 [*], we have
X,
Eoe(n)= [ M (—L29) 5 (g ay—
Re he

+00
= fzw( ) fWT%%WdS —lM(-—Tl‘Z) W) (x, 7)dx.
Therefore,

+oo
Ev; (x) =—fM (_hik) wy (x,1)dv

and
+o00

Ev()= [ M (—-,-f;) ©® (¥, 7)dx.

Integrating by parts we obtain

+o00

Ev’, (x) =_£ M (-hlk) (¥, 7)dv=M (_’;7) W’ (%, 7) lf: .
— %!jw; (x, )M’ (—h—-i-) dr=_zmw; (x, —he2) M’ (2)dz=

= fM’(z)[w (x,0) —w”, (x, O)hkz+——w< , (¥, —0(2) he2) (hkz)z] dz=
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+0oo0 -
=w;(x,0)—w’;t(x,0)hkfM’(z)zdz—}-

xtt

g
+% fw(‘” (x,—0(2) hez) M’ (2)2*dz, where 0<<0(2)<I.

Under the assumptions A4, A5, and the conditions laid upon M(2), we
have lim Ev/, (x) =0"(x). Similarly, we obtain that lim Ev}(x)=v"(x).
k—»o0 k—>00

Lemma is proved.

Let us introduce now the following assumptions.

A6. The problem (3) has a local solution x* i.e. v(x*)<<v(x) in
some neighbourhood U (x*, §) = {x| llx — x*||<<8} of x*.

A7. The function v(x) is twice diiferentiable at x* and wu™” (x*)u=>
=m/|ull?® for every u = R" and for some constant m>0.

Tyt gt by e vy

As. |

for every x!, x> = U (x*, ), where r is some integer and var ¢ (§) <<oo.
A9. For every x = U(x* 8) and for sufficiently large k

o o2
var M f(x,8)<— and varM’ j(x, &) <—.
& }1,,'e cr xx h’;z

Theorem 1. Let the assumptions A1, A3—A9, and
A10. lim kh? =00

k—>o0

hold.
Then, for sufficiently large k
1) the problem

min Evg(x) (5)

XERn

has a local solution %,
2) the problem (4) has a local solution x} with positive probability
not less than

1 {cg" varc(g) ' 160} [Ec (8) +85]2
kh 82-4 8 Y (m—6&—b)*

Py=]—

where 8,, 82, 83 are arbitrary fixed constants, 0<<d,<<m, 0<<§;+d:<<m,
83>0 and
3) P{llxy—x*ll<e}=>
o 160?
1 2-~ var c(g) :
>‘—k—h;{ mH g T ¢Rm—6—8) — BT }

3

for every 0<<e<< (m— 8; — 8;) /2Ec(E).
The proof of this theorem is reduced to direct application of the The-
orem in [5].
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TOENAOSUSFUNKTSIOONI STATISTILISEST HINDAMISEST
On leitud toendosusfunktsioonile wv(x)=P{f(x,E)<<0} diferentseeruv hinnang

Rk
P ki 3 ioh < f(:hgf)
i=1

realisatsioonid ja hlim hx = 0. On ndidatud, et vx(x) on funktsiooni v(x) asiimptoo-

), kus &i, i=1, ..., k, on juhusliku vektori § soltumatud

tiliselt nihutamata hinnang ja f{ilesande minuv,(x) lahend koondub tdendosuse jirgi
. xeRn
iilesande min v (x) lahendiks, kui &~ oo,

XERr

36y TAMM
O CTATUCTHYECKOM OUEHWBAHUU ®YHKLLUU BEPOSITHOCTH

B nacrosmefi paGote aas ¢yukunmn BeposThHoctH v(x) =P{f(x, §) <0} mnaiinena
( f(x, &)
-

BHCHMbIE peaJH3alliu cJyyaiiioro BekTopa § Jer:ohk=0. ITokasaHo, 4TO Ux(X)

l 3
nupdepennupyemas oueHka Uy (x) =;—2 M ), e &, i=1, =% &, Hes3a-

i=]

AIBJSIETCS aCHMMNTOTHYECKH HECMEIUeHHOH OlEHKOH (YHKUHH v(X) H 4TO mpH k—- oo pelle-

HHe 3aJaud Min v (X) CXOAHMTCS 1O BEPOATHOCTH K PELIeHHIO 3ajaun min v (x).
XeRn Xe&Rn
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