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ON THE DETERMINITY OF STANDARD WREATH PRODUCT
BY ITS SEMIGROUP OF ENDOMORPHISMS

(Presented by R.-K. Loide)

Let G and H be groups. If theé isomorphism of semigroups End G and End H
implies the isomorphism of groups G and H, then we can say that the group G is
determined by its semigroup of endomorphisms. In general, the necessary and sufficient
conditions for determinity of an arbitrary group by its semigroup of endomorphisms
are unknown. In this paper we study the determinity of the standard wreath product
G=A Wr B of groups A and B by its semigroup of endomorphisms.

The following theorems are proved.

Theorem 2.1. Let p be a prime, A a cyclic group of order p» and B a finite
group. Assume that
1° B is a direct product of its Sylow p-subgroup and Hall p-subgroup;
2° B is determined by its semigroup of endomorphisms;
3° the group of units of the group ring of B over integers modulo p™ is solvable.
Then the group A Wr B is determined by its semigroup of endomorphisms.

Theorem 3.1. The standard wreath product A Wr B of finife Abelian groups A
and B is determined by its semigroup of endomorphisms.

Theorem 32. Let Ay, A, ..., Ax be finite Abelian p-groups (n=1), where p
is a prime and let B,=A,WrA, By=Ax WrBx_, for all k{2, ..., n}. Then the
group B, is determined by its semigroup of endomorphisms.

1. Introduction

If A and B are groups, then the standard wreath product of A and B,
denoted A Wr B, is the semidirect product A2 » B of A2 by B, where A%
is the set of all functions f: B— A and

(fg) (b)=f(b)-g(b),
clfe=fe,  fe(b)=f(bc™")

for all b,c =B and f, g = A2. The general properties of wreath products
are presented in ['].

Let G be a fixed group. If for a suitable group H from the isomor-
phism of semigroups of all endomorphisms of groups G and H follows
the isomorphism of groups G and H, then we can say that the group G
is determined by its semigroup of endomorphisms in the class of all
groups. In this paper we study a problem when the wreath product
AWr B is determined by its semigroup of endomorphisms in the class of
all groups. The principal results are formulated in Theorems 2.1, 3.1
and 3.2.
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We shall use the following notations: End G — a semigroup of ali
endomorphisms of a group G; Aut G — a group of all automorphisms
of a group G; Z(G) — a centre of a group G; C(k) — a cyclic group of

order k; Z, — a ring of residual classes modulo &; é — an inner auto-

morphism, generated by an element g; C={g|geC}; <a,b,...) — a
subgroup, generated by elements a, b, .. ; , B, ...) — a subgroup,
generated by subsets A, B,...; Ko(x) = {y=EndG |yx = xy = y};
D (x)={y = Aut G|yx=xy=1x}.

2. Main theorem

The main result of this paper is

Theorem 2.1. Let p be a prime, A be a cyclic group of order p* and
B be a finite group such that:
1° the group B is a direct product of its Sylow p-subgroup and Hall

p’-subgroup; '
2° the group B is generated by its semigroup of endomorphisms in the

class of all groups;
3° the group of all invertible elements of the group ring of B over the
. _ring of residual classes modulo p" is solvable.
Then the wreath product AWr B is generated, by its semigroup of endo-
morphisms in the class of all groups.

Proof. Suppose that A and B are such groups that the assumptions
of theorem are satisfied. Denote G=A Wr B. Let G* be another group
such that the semigroups of all endomorphisms of G and G* are iso-
morphic:

End G = End G*. 2
We shall show that G and G* are also isomorphic. The image of anelement
z of End G under the isomorphism (2.1) we denote always as z*.
Assume below that x is the projection of G=A Wr B=A%XB on his
subgroup B. By [?], Corollary 4.1 and Assumption 3°, the group Dg(x)
is solvable. Therefore
G*—=Ker.x* >qdmxl,
Ker x*>~AB=C(p") X ... XC(p") (|B]| factors),
End (Imx*)~EndB
([?]. theorem). Due to Assumption 2° the groups Imx* and B are iso-

morphic. The groups B and Imx* will be identified later. Let T=XKer x*.
Consequently,

G*=T X B, (2.2)
T=C(p")X...XC(p") (|B]| factors). (2.3)

By Assumption 1°, B=B,XB,, where B, and B,, are the Sylow p-sub-
group and Hall p’-subgroup of B, respectively.
The group G=A Wr B splits into the following semidirect product:

G=([B,A®] X\ B) X\ A,
where '
ITGE Ai={f=A8|f(b)=1 for b1},
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and [B, A?] is a commutator-group between B and AZ. Clearly,

A=A==C(p").

Denote now by y the projection of G onto its subgroup A,. By [],
Lemma 1.6 the semigroups End (Imy)=EndA, and End (Imy*) are
isomorphic. As every finite group is generated by its semigroup of endo-
morphisms in the class of all groups ([*], Theorem 4.2), then Im y*
and Imy=A, are isomorphic:

Im y*==A,2C (p").

The further proof of Theorem 2.1 is developed in the following three
lemmas.

Lemma 22. ([%], Proposition 6). If zEndG and yz=0, then
Fueys.

Lemma 2.3. The group T splits into the direct product
, T=II,_,<ab),
where a is the generator of Im y*==C (p").
Proof. By construction xy=yx=0. Hence, x*y* = y*x* = 0*,
a e Imy* < Ker x*=T and the group
H=<{ab | b=B)

is a subgroup of T. Thus, H is f?-invariant. Let us show that H=T.

Let 5*-=G*/TP, where Tr={g’|g=T}. For every ge G* and
K < G* denote g=gT?, K={g | g = K}. Then, by (2.2) and (2.3),

G*=T > B; B=B;
T=C(p)X...XC(p) (|B| factors).

The subgroup & of G* is B-invariant,

By contradiction assume that H==T. There exists a maximal B-in-
variant proper subgroup D of T such that F< D (D={g<T|ge< D}).
Suppose G=G*/D. Then

G=T) B;
where
T={gD|geT}=T/D=T/D,

B={bD | b= B}=BD/D=B.

The group T is a non-trivial elementary Abelian p-subgroup of G. By

construction, T is B-invariant and has not non-trivial B-invariant sub-
groups. Since B=B,XB,’, where B, is a Sylow p-subgroup and B, is a
Hall p’-subgroup of B, we have

G=TX (B,XBy)=(TX By) X B,~. (2.4)
Let
F=TNZ(T X B,)
and
F={ge=T|gheF}.
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The group F is non-trivial ([*], Theorem 2.6.4) and thus
DcFcT,- F+#D. (2.5)

It is clear that F is ﬁ_-invariant. Therefore, F is B-invariant. By (2.5)
and the definition of D we have F=T. Consequently, F=T, T X =
=TXB,, and by (2.4)

G=(TXBy) X By= (T X B,") XB,. (2:6)

Since D is (By)-invariant, then due to [5], Theorem 3.3.2 there
exists a (B,)-invariant subgroup S of 7 such that T=3XD
(S={g=T|g=S5}). Then <3, By)=3 X B, and

T > B3 » B, (2.7)

Define now a map
v: SX By —>Tr"X B
by the equation
(bh)v=bh",

where b=B,r and heS. The map v is defined correctly. Indeed, if
bh="0h,, where b, b, = B,y and h, h, = S, then

b=b1, ﬁ=h—.|, h”lhl &S Tp’
‘(h_]h])p"—':l, hpn-|=hlpn-|’

and (bR)v= (b)h;)v. The direct calculations show that v is a homomor-

phism.
Let z* be the product of a natural homomorphism G*— G=G*/D,

a projection G—T X B, (see (2.6)), an isomorphism (2.7) and v. Then
z* is an endomorphism of G* and, by construction of z*,

Ker x* & Ker 2* (2.8)

and Imy* < Ker z*. Therefore, y*2*=0* According to Lemma 2.2 and
(2.1) z*=x*2*. Hence, Kerx* — Kerz*. This contradicts (2.8). The

contradiction obtained shows that T=H. _ a1ay
The subgroup H of T has |B| generators. From equation H=T=

=C(p)X...XC(p) (|B]| factors) and (2.3) it follows that T=H. The
last equation is equivalent to the statement of lemma. The lemma is

proved.
Lemma 24. The groups G* and A* Wr B are isomorphic.

Proof. Any element g of G* is by (2.2) and Lemma 2.3 uniquely
expressed as
g=c-II,_, (a@)f(b), <

where ¢ = B and i(b) = Z,~. Define a map tv: G*— A*Wr B by equation
gr=cf, where f e (A*)8 and [(b)=a'®. It is clear that v is injective.
The direct calculations show that v is a homomorphism. Consequently, ©
is an isomorphism. The lemma is proved and so is Theorem 2.1.
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3. Corollaries from the main theorem

By Theorem 2.1 and the results of [®] and [7], it is possible to prove
two following theorems.

Theorem 3.1. If A and B are finite Abelian groups then the wreath
product AWr B is generated by its semigroup of endomorphisms in the
class of all groups.

Proof. Suppose that A and B are finite Abelian groups. Denote
G=A Wr B. The group A splits into the direct product A=A4,X ... XAn,

where the subgroups A,, ..., A, are primary and cyclic. Then the sub-
group A? of G splits into the direct product AB=A5X ... XA® and
G=A5 X B=(A5X ... XA%) X\ B. (3.1)

In this connection h
{B, A“;?):Al‘? X B=A;Wr B,

and
6=( 1 42)x 2B
j=1, j+i
for any i={l,2,...,n}. Let x; and x are projections of G onto sub-

groups A% X B and B, respectively. Then
Af.= KerxNImx; Imx=B8,
Imy;=A2 X B=A; Wr B= (Ker x() Imx;) X Imx (3.2)
and
G= (ﬁ(KerxﬂImx,-))kImx‘ (3.3)
i=1

Assume now that G* is another group such that the semigroups
End G and End G* are isomorphic. Our purpose is to show that G and
G* are isomorphic.

Suppose that x*, x%¥, ..., x* are images of x, x;, ..., x» by isomor-

phism End G=End G*. From [®], Theorem 1 and Corollary 2 it follows
that for the group G* the equalities

G* e ( ﬁ (Ker x* ) Im x¥) ) > Im x*, (3.4)
=1 )
Im x%¥= (Ker x* () Im x¥) X Im x* {2.5)

hold similarly to (3.2) and (3.3). Denote B*=Imx*. Since Kg(x)=
=Ko+ (x*) and Kg(x:)=Kg+(x%), then due to [*], Lemma 1.6

End (Im x) = End (Im x*) (3.6)
and

End (Im x;) =End (Im x7%) (3.7)

for any i. From the commutativity of B=Imx it follows from (3.6) that
B=~Imx* = B* ([*], Theorem 4.2). By [2?], Corollary 4.6 all the
assumptions of Theorem 2.1 are true (taking A=2A4;). Hence, from (3.7)
follows the isomorphism Imx*=~Imx; From the construction of this

isomorphism it follows that
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Im x*= (Ker x* | Im x*) X B*=A* Wr B*= (A*)5 % B*  (3.8)

where A% is a some subgroup of Ker x* ) Im x% and A*=A;. The isomor-
phism (3.8) maps B* identically and Ker x* 1 Imx*¥ onto (A*)%". From
(3.4) and (3.5) it follows that G* is isomorphic to

(I=I1 (AT)"‘) b W o (3.9)

where (B*, (A¥)%) = A*WrB*. The group (3.9) is isomorphic to
(A¥X ... XA*)Wr B*. Since A¥=~A, and B*=B, then the groups G and
G* are by (3.1) isomorphic. The theorem is proved.

Theorem 3.2. Let p be a prime, Ao, Ay, ..., A, are [inite Abelian
p-groups (n=1) and

Bl=A1 WI'AO; Bk=Ak Wr Bk_1, k=2, SRR

Then the group B, is generated by its semigroup of endomorphisms in
the class of all groups.

Proof. We prove the theorem by induction on n. If n=1 then the
statement of theorem is true according to Theorem 3.1.

Assume now that n>1"and for 1<<k<<n the group B, is generated
by its semigroup of endomorphisms in the class of all groups. We shall
show that the group B,=A,Wr B, is also generated by its semigroup
of endomorphisms. We use Theorem 2.1 (for B=B,_,, A=A,). Since
B, is ap-group, the condition 1° of Theorem 2.1 is fulfilled. The condi-
tion 2° of Theorem 2.1 is fulfilled by the assumption of the induction.
From [7], Theorem 1 the condition 3° of Theorem 2.1 is also fulfilled.
Consequently, the group B, is generated by its semigroup of endomor-
phisms in the class of all the groups. The theorem is proved.
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Peeter PUUSEMP
STANDARDSE POIMIKU MAARATAVUSEST OMA ENDOMORFISMIPOOLRUHMAGA

On toestatud jargmised teoreemid.
Teoreem. 2.1. Olgu p suvaline algarv, A tsiikliline rihm jirguga p" ja B mingi
loplik rihm, kusjuures:
1° rithm B avaldub oma Sylow’ p-alamriihma ja Halli p’-alamriihma otsekorrutisena;
2° rithm B on mddratud oma endomorfismipoolriithmaga koigi rithmade klassis;
3° rihma B ile jadgiklassiringi mooduli p™ jirgi voetud rihmaringi poératavate ele-
mentide rithm on lahenduv. , 3 :
Siis poimik A Wr B on mddratud oma endomorfismipoolriihmaga koigi rithmade klassis.
Teoreem 3.1. Laplike Abeli rithmade A ja B poimik A Wr B on mddratud oma
endomorfismipoolrihmaga koigi riihmade klassis.
Teoreem 3.2. Olgu Ay, Ay, ..., Ay [oplikud Abeli p-riihmad (n=1, p on  alg-
arv) ja By=A,Wr Ay, By=ArWrBsx_, iga k{2, ..., n} korral. Siis rihm B, on
mddratud oma endomorfismipoolriihmaga koigi rithmade klassis.

Mesrep MMYYCEMIT

Ob OMPENENSAEMOCTH CTAHJAPTHOIO CHJIETEHHMSI TPYNN
EE MOJIYIPYIIOW 3HJOMOP®U3MOB

JloKa3bIBaIOTCH CJIEAYIOLIHE TeOPEeMEL.
Teopema 2.1. ITycre p — npouseoasroe npocroe wucao, A — yukiuveckasn epynna
nopadka p™ u B — Koweunas epynna, npuiem:
1° epynna B seaseTcs npamod cymMOL ceoux cur08CKO[E p-nodzpynnel u X0AA08CKOL p’-
nodepynnot;
2° epynna B onpedeasercs ceoeil noayepynnoi ecex IHOOMOPPUIMOE 8 Kiacce Bcex epynn;
3° epynna obparumely 3neMEHTO8 epynnoeozo roavya epynnot B Had Koabyom 6bI4ETOB
no modyawo p"™ paspewuma.
Toeda cnaerenue AWrB onpedeasercs e2o noayepynnoi 3andomoppusmos & kaacCe acex
epynn.
Teopema 3.1. Cnaerenue A Wr B koneunvix abeaesoix epynn A u B onpedeasercs
e20 noayepynnoii 3HOOMOPHU3MOB 8 Kiacce 8cex epynn.
Teopema 3.2. ITycre Ao Ay, ..., An — KoHeuHole abeaesol p-epynnot (n=1, p —
npoctoe uucao) u By=A; Wr Ay, Bi=Ax Wr By—y 0aa xandozo k{2, ..., n}. Tozda
epynna B, onpedeasercs ee noayepynnoh 3HOOMOPPUIMOE 6 Kaacce 6cex epynn.
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