УДК 535.55

В. ШАРАФУТДИНОВ

О МЕТОДЕ ИНТЕГРАЛЬНОЙ ФОТОУПРУГОСТИ В СЛУЧАЕ СЛАБОЙ ОПТИЧЕСКОЙ АНИЗОТРОПИИ

(Представил Х. Абен)

Из всех известных поляризационно-оптических методов исследования напряжений метод интегральной фотоупругости [¹] выгодно выделяется простотой и точностью измерений, но приводит к сложным математическим постановкам, большинство из которых еще ждут своего решения. В настоящей работе рассматривается одна из таких задач.

Если в пространстве имеется напряженная среда, характеризуемая тензором напряжений σ, то в случае слабой оптической анизотропии метод интегральной фотоупругости, как показано в [²], [³], позволяет вдоль любой прямой π измерить два числа

$$L(\sigma,\pi) = \int \sigma_{YZ}(X,0,0) dX; \quad S(\sigma,\pi) = \int (\sigma_{YY} - \sigma_{ZZ})(X,0,0) dX, \quad (1)$$

где XYZ — прямоугольная система координат, относительно которой π задается уравнениями Y = Z = 0.

Технические условия проведения измерений накладывают определенные ограничения на семейство прямых π , вдоль которых можно измерить интегралы (1). Наиболее удобной с точки зрения технической реализации является ситуация, когда измерение интегралов (1) производится вдоль горизонтальных прямых, т. е. тех прямых, которые в некоторой (лабораторной) системе координат *хуг* параллельны плоскости z=0. В связи с этим в настоящей работе рассматривается математическая постановка вопроса о том, насколько однозначно тензор напряжений определяется интегралами (1), измеренными вдоль всех горизонтальных прямых, лежащих в слое a < z < b. При этом предполагаем, что тензор напряжений удовлетворяет лишь уравнениям равновесия, и не прибегаем к рассмотрению деформаций. Поэтому выводы настоящей работы справедливы для любой модели (упругой, термоупругой, вязкоупругой и пр.) сплошной напряженной среды. Важно лишь предположение о том, что тензор диэлектрической проницаемости линейно зависит от тензора напряжений и при этом справедливо приближение слабой оптической анизотропии.

Будем считать, что напряженная среда заполняет цилиндрическую область $G=D\times(a, b) = \{(x, y, z) \mid (x, y) \in D, a < z < b\}$, где D — двумерная область на плоскости переменных (x, y), ограниченная строго выпуклой, замкнутой C^1 -гладкой кривой γ . Пусть $H=\gamma\times(a, b)=$ = $\{(x, y, z) \mid (x, y) \in \gamma, a < z < b\}$ — боковая поверхность цилиндра G. Будем считать, что компоненты тензора напряжений σ имеют непрерывные вторые производные в G, а их первые производные непрерывны вплоть до боковой поверхности, т. е.

$$\sigma \Subset C^2(G) \cap C^1(G \cup H).$$
⁽²⁾

Предполагаем, что в области *G* справедливы уравнения равновесия (считаем, что объемные силы отсутствуют):

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = 0, \qquad (3_1)$$

$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} = 0, \qquad (3_2)$$

$$\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} = 0, \qquad (3_3)$$

а на боковой поверхности цилиндра G отсутствуют внешние нагрузки, т. е. при $(x, y, z) \Subset H$

 $\sigma_{xx}n_x + \sigma_{xy}n_y = 0, \tag{41}$

$$\sigma_{yx}n_x + \sigma_{yy}n_y = 0, \qquad (4_2)$$

$$\sigma_{zx}n_x + \sigma_{zy}n_y = 0, \tag{43}$$

где $n = (n_x, n_y)$ — единичный вектор внешней нормали к ү. Для справедливости некоторых из наших выводов краевые условия (4) не существенны; это будем оговаривать в дальнейшем. Для удобства будем считать тензор о определенным во всей полосе $\{(x, y, z) | a < z < b\}$, положив $\sigma = 0$ вне $G \cup H$.

Семейство горизонтальных прямых в пространстве является трехпараметрическим, но нам будет удобнее использовать 4 параметра. Обозначим через $\pi(x_0, y_0, \alpha, z_0)$ прямую, задаваемую параметрическими уравнениями

$$x = x_0 + t \cos \alpha$$
, $y = y_0 + t \sin \alpha$, $z = z_0$.

Отметим, что $\pi(x, y, a, z)$ фактически зависит от трех параметров ($x \sin a - y \cos a, a, z$). В результате измерения интегралов (1) вдоль всех горизонтальных прямых получаем две функции, определенные при a < z < b

$$L_{\sigma}(x, y, a, z) = L(\sigma, \pi(x, y, a, z)); \quad S_{\sigma}(x, y, a, z) = S(\sigma, \pi(x, y, a, z)).$$

В настоящей работе получены следующие три основных результата. 1) Функции L_{σ} и S_{σ} зависимы, а именно $S_{\sigma}(x, y, a, z)$ выражается через $L_{\sigma}(x, y, a, z)$ и $S_{\sigma}(x, y, a, z_0)$.

2) Компонента $\sigma_{zz}(x, y, z)$ однозначно определяется функциями $L_{\sigma}(x, y, a, z)$ и $S_{\sigma}(x, y, a, z)$. Указаны явные процедуры определения σ_{zz} по L_{σ} и S_{σ} .

3) Никакой другой, кроме σ_{zz} , информации о поле напряжений σ по функциям L_{σ} и S_{σ} определить нельзя. Точнее говоря, справедливо следующее утверждение. Если два тензорных поля σ^1 и σ^2 удовлетворяют (2), (3), (4) и если $\sigma_{zz}^1 \equiv \sigma_{zz}^2$, то $L_{\sigma^1} \equiv L_{\sigma^2}$, $S_{\sigma^1} \equiv S_{\sigma^2}$.

В системе координат XYZ, связанной с xyz формулами перехода

$$x = X \cos \alpha - Y \sin \alpha + x_0$$
, $y = X \sin \alpha + Y \cos \alpha + y_0$, $z = Z + z_0$,

прямая $\pi(x_0, y_0, \alpha, z_0)$ задается уравнениями Y = Z = 0, а компоненты тензора о относительно этих систем связаны соотношениями

$$\sigma_{YY}(t, 0, 0) = \sigma_{xx}(\bar{x}_0 + \bar{\xi}t) \sin^2 \alpha - 2\sigma_{xy}(\bar{x}_0 + \bar{\xi}t) \cos \alpha \sin \alpha + \sigma_{yy}(\bar{x}_0 + \bar{\xi}t) \cos^2 \alpha,$$

$$\sigma_{YZ}(t, 0, 0) = -\sigma_{xz}(\bar{x}_0 + \bar{\xi}t) \sin \alpha + \sigma_{yz}(\bar{x}_0 + \bar{\xi}t) \cos \alpha,$$

$$\sigma_{ZZ}(t, 0, 0) = \sigma_{zz}(\bar{x}_0 + \bar{\xi}t),$$

в которых мы положили для краткости $\bar{x}_0 = (x_0, y_0, z_0), \xi = (\cos \alpha, \sin \alpha, 0)$. Подставив эти выражения в (1), получим

$$L_{\sigma}(x, y, a, z) = \int_{-\infty}^{\infty} \left[-\sigma_{xz}(\bar{x} + \bar{\xi}t) \sin a + \sigma_{yz}(\bar{x} + \bar{\xi}t) \cos a \right] dt,$$
 (5)

$$S_{\sigma}(x, y, \alpha, z) = \int_{-\infty}^{\infty} \left[\left(\sigma_{xx} - \sigma_{zz} \right) \left(\bar{x} + \xi t \right) \sin^2 \alpha - \frac{1}{2} \right] dt dt$$

$$-2\sigma_{xy}(\overline{x}+\overline{\xi}t)\cos\alpha\sin\alpha+(\sigma_{yy}-\sigma_{zz})(\overline{x}+\overline{\xi}t)\cos^2\alpha]dt.$$
 (6)

Зафиксируем $z_0(a < z_0 < b)$ и определим на плоскости $z = z_0$ векторное поле $u = (u_x, u_y)$, положив

$$u_x(x, y, z_0) = \sigma_{yz}(x, y, z_0); \quad u_y(x, y, z_0) = -\sigma_{xz}(x, y, z_0).$$
(7)

Тогда соотношение (5) можно переписать в виде

$$L_{\sigma}(x, y, \alpha, z_0) = Iu(x, y, \alpha, z_0), \qquad (8)$$

где

$$Iu(x, y, a, z_0) = \int_{-\infty}^{\infty} [u_x(x+t\cos a, y+t\sin a, z_0)\cos a] + u_y(x+t\cos a, y+t\sin a, z_0)\sin a] dt.$$
(9)

Аналогично, если на плоскости $z = z_0$ определить симметричное тензорное поле $v = (v_{xx}, v_{xy}, v_{yy})$, положив

$$v_{xx}(x, y, z_0) = (\sigma_{yy} - \sigma_{zz}) (x, y, z_0),$$

$$v_{xy}(x, y, z_0) = -\sigma_{xy}(x, y, z_0),$$

$$v_{yy}(x, y, z_0) = (\sigma_{xx} - \sigma_{zz}) (x, y, z_0),$$

(10)

то соотношение (6) можно переписать в виде

$$S_{\sigma}(x, y, \alpha, z_0) = Iv(x, y, \alpha, z_0), \qquad (11)$$

где

$$lv(x, y, a, z_0) = \int_{-\infty}^{\infty} [v_{xx}(\bar{x})\cos^2 a + 2v_{xy}(\bar{x})\cos a\sin a + v_{yy}(\bar{x})\sin^2 a]_{\bar{x}=(x+t\cos a, y+t\sin a, z_0)} dt.$$
(12)

Оператор *I*, определенный на тензорных полях степени 1 и 2 формулами (9) и (12) соответственно, называется лучевым преобразованием. Оно подробно изучалось в [⁴], [⁵], [⁶]. В частности в [⁴], [⁵] доказано, что для тензорного поля *и* интегральная информация *Iu* и локальная информация *Wu* однозначно определяют друг друга, где *W* — некоторый дифференциальный оператор, получивший в [⁴] название оператора Сен-Венана. В [⁶], [⁷] получена явная формула, выражающая *Wu* через *Iu*. В помещенном ниже приложении эта формула приведена в виде, приспособленном для целей настоящей работы.

Для тензорного поля $u = (u_x, u_y)$ степени 1 $W_D u = \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y}$ (по поводу обозначения W_D см. приложение). Подставляя сюда выражение (7) для u_x , u_y , приходим к выводу, что функция

$$l_{\sigma}(x, y, z) = -\frac{\partial \sigma_{xz}}{\partial x} - \frac{\partial \sigma_{yz}}{\partial y}$$
(13)

однозначно определяется по функции $L_{\sigma}(x, y, a, z)$. Явное выражение l_{σ} через L_{σ} вытекает из приводимых ниже формул (40)—(42) с учетом равенств (8) и $l_{\sigma} = W_D u$. Аналогично, для тензорного поля $v = (v_{xx}, v_{xy}, v_{yy})$ степени 2

$$W_D v = 2 \frac{\partial^2 v_{xy}}{\partial x \partial y} - \frac{\partial^2 v_{xx}}{\partial y^2} - \frac{\partial^2 v_{yy}}{\partial x^2},$$

Подставляя сюда выражения (10) для vij, получаем, что функция

$$s_{\sigma}(x, y, z) = \frac{\partial^2 (\sigma_{zz} - \sigma_{xx})}{\partial x^2} + \frac{\partial^2 (\sigma_{zz} - \sigma_{yy})}{\partial y^2} - 2 \frac{\partial^2 \sigma_{xy}}{\partial x \partial y}$$
(14)

однозначно определяется функцией $S_{\sigma}(x, y, a, z)$. Явное выражение s_{σ} через S_{σ} вытекает из приводимых ниже формул (47)—(49) с учетом равенств (11) и $s_{\sigma} = W_{D}v$.

Вспомним, что о удовлетворяет уравнениям равновесия (3). В силу (3₃) уравнение (13) эквивалентно следующему

$$\frac{\partial \sigma_{zz}}{\partial z} = l_{\sigma}.$$
 (15)

Если уравнение (3₁) продифференцировать по x, (3₂) — по y и полученные соотношения прибавить к (14), то придем к уравнению

$$\underbrace{\frac{\partial^2 \sigma_{zz}}{\partial x^2}}_{\partial x^2} + \underbrace{\frac{\partial^2 \sigma_{zz}}{\partial y^2}}_{\partial y^2} + \underbrace{\frac{\partial}{\partial z}}_{\partial z} \left(\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} \right) = s_{\sigma},$$

которое в силу (13) эквивалентно уравнению

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\sigma_{zz} = \frac{\partial l_\sigma}{\partial z} + s_\sigma.$$
 (16)

Сравнивая (15) и (16), мы видим, что l_{σ} и s_{σ} связаны между собой соотношением

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}\right) l_{\sigma} = \frac{\partial s_{\sigma}}{\partial z}.$$
 (17)

Отметим, что уравнения (15)—(17) получены нами без использования краевых условий (4). Теперь, используя эти условия, установим, что значение σ_{zz} на боковой поверхности H цилиндра G определяется по функции S_{σ} . Для этого возьмем две близкие точки $\bar{x}_0 = (x_0, y_0, z_0)$ и $\bar{x}_0' = (x_0', y_0', z_0)$, принадлежащие H, и обозначим через $\pi(\bar{x}_0, \bar{x}_0')$ горизонтальную прямую, проходящую через \bar{x}_0 и \bar{x}_0' . Согласно (6)

$$S(\sigma, \pi(\bar{x}_0, \bar{x}'_0)) = \int_{0}^{[\bar{x}_0 - \bar{x}'_0]} [(\sigma_{xx} - \sigma_{zz})(\bar{x}_0 + \bar{\xi}t)\xi_y^2 - 2\sigma_{xy}(\bar{x}_0 + \bar{\xi}t)\xi_x\xi_y + (\sigma_{yy} - \sigma_{zz})(\bar{x}_0 + \bar{\xi}t)\xi_x^2]dt, \qquad (18)$$

где $\bar{\xi} = (\xi_x, \xi_y, 0) = \frac{\bar{x}'_0 - \bar{x}_0}{|\bar{x}'_0 - \bar{x}_0|}$. Устремим точку \bar{x}_0' к \bar{x}_0 , тогда век-

тор ξ стремится к ($\tau_x, \tau_y, 0$), где $\tau = (\tau_x, \tau_y)$ — единичный касательный вектор к кривой γ в точке (x_0, y_0). Применяя к интегралу (18) теорему о среднем значении, получим

$$\lim_{\overline{x'_{\sigma} \to \overline{x_0}}} \frac{S\left(\sigma, \pi\left(\overline{x_0}, \overline{x'_0}\right)\right)}{|\overline{x'_0} - \overline{x_0}|} = \sigma_{xx}\left(\overline{x_0}\right)\tau_y^2 - 2\sigma_{xy}\left(\overline{x_0}\right)\tau_x\tau_y + \sigma_{yy}\left(\overline{x_0}\right)\tau_x^2 - \sigma_{zz}\left(\overline{x_0}\right).$$
(19)

Касательный вектор $\tau = (\tau_x, \tau_y)$ к у выражается через нормальный вектор $n = (n_x, n_y)$ по формулам $\tau_x = -n_y, \tau_y = n_x$. Подставив эти выражения в (19) и воспользовавшись (4₁), (4₂), убедимся в справедливости равенства

$$\sigma_{zz}(\bar{x}) = -\lim_{\bar{x}' \to \bar{x}} \frac{S(\sigma, \pi(\bar{x}, \bar{x}'))}{|\bar{x}' - \bar{x}|} \qquad (\bar{x}, \bar{x}' \in H; \ z = z').$$
(20)

Отметим, что это соотношение обобщает один из результатов работы [⁸], в которой оно получено в осесимметричном случае.

Соотношения (15), (16), (20) позволяют утверждать, что функции L_{σ} , S_{σ} однозначно определяют компоненту σ_{zz} . Что касается численных методов определения σ_{zz} , то в силу переопределенности системы (15), (16) здесь возможны рзличные варианты. Опишем вкратце два из них.

1) Фиксируем $z_0(a < z_0 < b)$. Пользуясь измеренными значениями $S_{\sigma}(x, y, a, z_0)$, находим на основании (20) значения $\sigma_{zz}(\bar{x})$ при $\bar{x} = (x, y, z_0) \in H$. Применяя к функциям $L_{\sigma}(x, y, a, z)$ и $S_{\sigma}(x, y, a, z_0)$ процедуры обращения лучевого преобразования, описанные в приводимом ниже приложении, находим функции $l_{\sigma}(x, y, z)$ и $s_{\sigma}(x, y, a, z_0)$. Рассматривая (16) при фиксированном z_0 как уравнение Пуассона в области D относительно функции $\sigma_{zz}(x, y, z_0)$ и используя найденные граничные значения $\sigma_{zz}(x, y, z_0)|_{(x,y)\in\gamma}$, решаем задачу Дирихле и находим $\sigma_{zz}(x, y, z_0)$. Интегрируя (15), определяем, исходя из $l_{\sigma}(x, y, z)$ и $\sigma_{zz}(x, y, z_0)$, функцию $\sigma_{zz}(x, y, z)$.

2) Пользуясь измеренными значениями $S_{\sigma}(x, y, \alpha, z)$, находим на основании (20) $\sigma_{zz}|_{H}$. Применяя к $L_{\sigma}(x, y, \alpha, z)$ и $S_{\sigma}(x, y, \alpha, z)$ процедуры обращения лучевого преобразования, находим функции $l_{\sigma}(x, y, z)$ и $s_{\sigma}(x, y, z)$. Решая при каждом фиксированном z задачу Дирихле для уравнения Пуассона (16), находим $\sigma_{zz}(x, y, z)$.

Первый описанный метод требует, по сравнению со вторым, гораздо меньшего объема вычислений, поскольку в нем задачу Дирихле и задачу обращения лучевого преобразования для тензорного поля степени 2 нужно решать лишь один раз (при $z=z_0$). Таким образом, в первом методе основной объем вычислений приходится на процедуру обращения лучевого преобразования векторного поля (вычисления l_{σ} через L_{σ}), которую надо повторять многократно (для каждого значения z). Единственным, по мнению автора, недостатком первого метода является то, что ошибка определения $\sigma_{zz}(x, y, z)$ может накапливаться по мере удаления от сечения $z=z_0$, в то время как во втором методе все горизонтальные сечения равноправны. При вычислении по второму методу можно использовать соотношение (17) для контроля правильности определения l_{σ} и s_{σ} . Возможны различные комбинации этих двух методов.

Докажем, что никакой другой, кроме σ_{zz} , информации о поле σ по функциям L_{σ} и S_{σ} определить нельзя. Пусть тензорные поля σ^1 , σ^2 удовлетворяют (2), (3), (4) и $\sigma^1_{zz} \equiv \sigma^2_{zz}$. Тогда их разность $\sigma = \sigma^1 - \sigma^2$ удовлетворяет (2), (3), (4) и

$$\sigma_{zz} \equiv 0. \tag{21}$$

Нужно показать, что

$$L_{\sigma} \equiv 0, \tag{22}$$

$$S_{\sigma} \equiv 0.$$
 (23)

Зафиксируем z_0 и определим на плоскости $z=z_0$ тензорные поля u, v степени 1 и 2 соответственно формулами (7) и (10). Тогда будут справедливы равенства (8) и (11). Поэтому для доказательства (22), (23) достаточно установить, что Iu=0, Iv=0. В силу результатов, полученных в [⁴], [⁵], для этого, в свою очередь, достаточно установить, что

$$Wu = 0, \tag{24}$$

$$Wv = 0,$$
 (25)

где W — оператор Сен-Венана.

Согласно приведенной ниже формуле (39)

$$Wu = \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} + (u_x n_y - u_y n_x) \delta_{\gamma}, \qquad (26)$$

где δ_{γ} — δ -функция, сосредоточенная на кривой γ , $n = (n_x, n_y)$ — единичный вектор внешней нормали к γ . Подставляя в (26) выражения (7) для u_x , u_y , получим

$$Wu = -\left(\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y}\right) + (\sigma_{xz}n_x + \sigma_{yz}n_y)\delta_{y}.$$

Используя (33), это можно переписать в виде

$$Wu = \frac{\partial \sigma_{zz}}{\partial z} + (\sigma_{xz}n_x + \sigma_{yz}n_y) \delta_{y}.$$

Сравнивая это равенство с (4₃) и (21), приходим к (24). Согласно приведенным ниже формулам (44)—(46)

$$Wv = W_D v + W_{\nu} v, \tag{27}$$

где

$$W_D v = 2 \frac{\partial^2 v_{xy}}{\partial x \partial y} - \frac{\partial^2 v_{xx}}{\partial y^2} - \frac{\partial^2 v_{yy}}{\partial x^2}, \qquad (28)$$

а $W_{\gamma}v$ — обобщенная функция с носителем на кривой γ , которая определяется равенством ($\varphi(x, y)$ — произвольная гладкая функция на плоскости)

$$\langle W_{\gamma}v, \varphi \rangle = \oint_{\gamma} \left(\frac{\partial v_{xx}}{\partial y} n_{y} + \frac{\partial v_{yy}}{\partial x} n_{x} - \frac{\partial v_{xy}}{\partial x} n_{y} - \frac{\partial v_{xy}}{\partial y} n_{x} \right) \varphi ds - - \oint_{\gamma} \left(v_{xx} \frac{\partial \varphi}{\partial y} n_{y} + v_{yy} \frac{\partial \varphi}{\partial x} n_{x} - v_{xy} \frac{\partial \varphi}{\partial x} n_{y} - v_{xy} \frac{\partial \varphi}{\partial y} n_{x} \right) ds.$$
 (29)

Подставляя выражения (10) для v_{ij} в равенства (28), (29) и учитывая (21), получим

$$W_D v = -\left(\frac{\partial^2 \sigma_{xx}}{\partial x^2} + \frac{\partial^2 \sigma_{yy}}{\partial y^2} + 2\frac{\partial^2 \sigma_{xy}}{\partial x \partial y}\right), \qquad (30)$$

$$\langle W_{\gamma}v, \varphi \rangle = \oint_{\gamma} \left[\left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} \right) n_x + \left(\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} \right) n_y \right] \varphi ds - \\ - \oint_{\gamma} \left[\left(\sigma_{xx}n_x + \sigma_{xy}n_y \right) \frac{\partial \varphi}{\partial x} + \left(\sigma_{xy}n_x + \sigma_{yy}n_y \right) \frac{\partial \varphi}{\partial y} \right] ds.$$
 (31)

Если уравнение (3_1) продифференцировать по x, (3_2) по y и сложить полученные равенства, то будем иметь

$$\frac{\partial^2 \sigma_{xx}}{\partial x^2} + \frac{\partial^2 \sigma_{yy}}{\partial y^2} + 2 \frac{\partial^2 \sigma_{xy}}{\partial x \partial y} = - \frac{\partial}{\partial z} \left(\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} \right),$$

что в силу (33) можно переписать так

$$\frac{\partial^2 \sigma_{xx}}{\partial x^2} + \frac{\partial^2 \sigma_{yy}}{\partial y^2} + 2 \frac{\partial^2 \sigma_{xy}}{\partial x \, \partial y} = \frac{\partial^2 \sigma_{zz}}{\partial z^2}$$

Сравнивая последнее равенство с (21) и (30), мы видим, что

 $W_D v = 0.$

Согласно (4_2) , (4_3) , подынтегральное выражение во втором из интегралов, стоящих в правой части равенства (31), тождественно равно нулю, а подынтегральное выражение из первого интеграла согласно (3_1) , (3_2) можно преобразовать к виду

$$\langle W_{y}v, \varphi \rangle = - \oint_{\gamma} \frac{\partial}{\partial z} (\sigma_{xz}n_{x} + \sigma_{yz}n_{y}) \varphi \, ds.$$

Сравнивая это с (4₃), убеждаемся, что $W_{\nu}v=0$. Вместе с (27), (32) это дает Wv=0, что и завершает доказательство.

В заключение еще раз отметим, что краевые условия (4) и наши предположения об области G (цилиндр со строго выпуклой кривой у в основании) существенны лишь для определения граничных значений $\sigma_{zz}|_{H}$, а соотношения (15)—(17) справедливы для произвольной G безотносительно к краевым условиям.

ПРИЛОЖЕНИЕ

Обращение лучевого преобразования тензорных полей степени 1 и 2 на плоскости

Все, что нам нужно, содержится в следствии теоремы 2 работы [6] или в теореме 3 работы [7]. Тем не менее автор счел нужным поместить настоящее приложение по следующим причинам: 1) для тензорных полей степени 1 и 2 на плоскости (в обозначениях

1) для тензорных полей степени 1 и 2 на плоскости (в обозначениях работ [⁶], [⁷] случай n=2; m=1 или m=2) общие формулы, приведенные в этих работах, значительно упрощаются и 2) применение этих результатов несколько затруднено тем обстоятельством, что они получены для тензорных полей, определенных на всей плоскости, а в настоящей работе нас интересует случай поля, заданного в ограниченной области.

Рассмотрим сначала случай векторного поля на плоскости (n=2, m=1). Пусть D — плоская область, ограниченная замкнутой C^1 -гладкой кривой ү, $u=(u_x, u_y)$ — векторное поле, определенное и непрерывное в замкнутой области $D \cup \gamma$ и имеющее непрерывные частные производные первого порядка в D. Будем считать поле u определенным на всей плоскости, положив u=0 вне $D \cup \gamma$. Определенное таким образом поле u имеет разрыв на кривой γ , поэтому входящие в оператор Сен-Венана производные надо понимать в обобщенном смысле. Соответственно этому условимся через ∂_x , ∂_y обозначать производные в обобщенном смысле, а через $\partial/\partial x$, $\partial/\partial y$ классические производные. Лучевое преобразование векторного поля на плоскости определяется формулой

$$Iu(x, y, \alpha) =$$

$$= \int \left[u_x (x + t \cos a, y + t \sin a) \cos a + u_y (x + t \cos a, y + t \sin a) \sin a \right] dt.$$

Оператор Сен-Венана в рассматриваемом случае (n=2, m=1) имеет одну ненулевую компоненту, поэтому мы можем считать, что Wu является функцией

$$Wu = \partial_x u_y - \partial_y u_x. \tag{33}$$

Ясно, что

00

$$Wu = W_D u + W_y u, \tag{34}$$

385

(32)

где

$$W_D u = \begin{cases} \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y}, & \text{если} \quad (x, y) \in D, \\ 0, & \text{если} \quad (x, y) \notin D \cup \gamma, \end{cases}$$
(35)

а $W_{\gamma u}$ — обобщенная функция с носителем на γ , которую мы сейчас вычислим.

Если f — обобщенная функция, а φ — пробная (т. е. гладкая финитная) функция, то через $\langle f, \varphi \rangle$ обозначаем значение функционала f на φ . Согласно определению производных обобщенной функции

$$\langle Wu, \varphi \rangle = \langle \partial_x u_y - \partial_y u_x, \varphi \rangle = \left\langle u_x, \frac{\partial \varphi}{\partial y} \right\rangle - \left\langle u_y, \frac{\partial \varphi}{\partial x} \right\rangle = \\ = \iint_D \left(u_x \frac{\partial \varphi}{\partial y} - u_y \frac{\partial \varphi}{\partial x} \right) dx \, dy.$$

Преобразуя последний интеграл по формуле Грина, получим

$$\langle Wu, \varphi \rangle = \int_{D} \int \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right) \varphi \, dx \, dy + \oint_{\gamma} (u_x n_y - u_y n_x) \, ds,$$

где $n = (n_x, n_y)$ — единичный вектор внешней нормали к ү. Учитывая (35), это можно переписать в виде

$$\langle Wu, \varphi \rangle = \langle W_D u, \varphi \rangle + \oint_{\gamma} (u_x n_y - u_y n_x) \varphi \, ds.$$
(36)

Напомним, что δ-функцией, сосредоточенной на кривой γ, называется обобщенная функция δ_γ, определяемая равенством

$$\langle \delta_{\gamma}, \varphi \rangle = \oint_{\gamma} \varphi \, ds.$$

Равенство (36) означает, что

$$Wu = W_D u + (u_x n_y - u_y n_x) \delta_{\gamma}. \tag{37}$$

Следовательно,

$$W_{\gamma}u = (u_x n_y - u_y n_x)\delta_{\gamma}, \tag{38}$$

а равенство (34) можно записать в виде

$$Wu = \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} + (u_x n_y - u_y n_x) \delta_{\gamma}.$$
 (39)

Укажем алгоритм определения $W_D u$ по функции Iu(x, y, a). Этот алгоритм вытекает из формулы, приведенной в следствии теоремы 2 работы [⁶] или в теореме 3 работы [⁷], и состоит в следующем. Сначала определяем векторное поле $\mu = (\mu_x, \mu_y)$ на плоскости по формулам

$$\mu_{x}(x, y) = \frac{1}{4\pi} \int_{0}^{2\pi} Iu(x, y, \alpha) \cos \alpha \, d\alpha;$$

$$\mu_{y}(x, y) = \frac{1}{4\pi} \int_{0}^{2\pi} Iu(x, y, \alpha) \sin \alpha \, d\alpha.$$
(40)

Затем находим поле $v = (v_x, v_y)$, полагая

$$v_x = (-\Delta)^{1/2} \mu_x; \quad v_y = (-\Delta)^{1/2} \mu_y,$$
 (41)

где $(-\Delta)^{1/2}$ — оператор, определяемый с помощью преобразования Фурье *F* равенствами

 $F[(-\Delta)^{1/2}f(x, y)] = \varrho f(\xi, \eta); \quad f(\xi, \eta) = F[f(x, y)]; \quad \varrho = \sqrt{\xi^2 + \eta^2}.$

Наконец, находим

$$W_D u = W_D v = \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}.$$
(42)

Второе слагаемое из правой части (34) можно определить по функцин Iu, исходя из той же формулы, но проще это сделать следующим образом. Предположим, что область D строго выпуклая, и пусть $\gamma(s) =$ $= (\gamma_x(s), \gamma_y(s))$ — параметризация кривой γ длиной дуги s, причем при возрастании s кривая обходится против часовой стрелки. Обозначим через $\alpha(s, \Delta s)$ угол, образуемый с осью Ox вектором $\xi(s, \Delta s) = (\gamma(s + \Delta s) - \gamma(s))/|\gamma(s + \Delta s) - \gamma(s)|$. Тогда

$$Iu(\gamma_x(s), \gamma_y(s), \alpha(s, \Delta s)) = \int_0^{|\xi|(s, \Delta s)} [u_x(\gamma(s) + t\xi(s, \Delta s)) \cos \alpha(s, \Delta s) +$$

$$+u_y(\gamma(s)+t\xi(s,\Delta s))\sin\alpha(s,\Delta s)]dt.$$

Отсюда следует, что

$$(u_x \gamma_x + u_y \gamma_y)(s) = \lim_{\Delta s \to 0} \frac{1}{\Delta s} Iu(\gamma_x(s), \gamma_y(s), \alpha(s, \Delta s)),$$

где точкой обозначено дифференцирование по s. Поскольку $\gamma_x = -n_y$, $\dot{\gamma}_y = n_x$, то предыдущее соотношение можно переписать в виде

$$(u_x n_y - u_y \overline{n}_x)(s) = -\lim_{\Delta s \to 0} \frac{1}{\Delta s} Iu(\gamma_x(s), \gamma_y(s), \alpha(s, \Delta s)).$$
(43)

Равенства (38), (43) дают выражение W_{yu} через Iu.

Рассмотрим теперь случай тензорного поля степени 2 на плоскости (n=m=2). Пусть область D такая же, как выше, $v = (v_{xx}, v_{xy}, v_{yy}) -$ симметричное тензорное поле, определенное и непрерывное вместе с первыми производными в замкнутой области $D \cup \gamma$ и имеющее непрерывные производные второго порядка в D. Полагаем v=0 вне $D \cup \gamma$. Лучевое преобразование в данном случае определяется формулой

$$Iv(x, y, \alpha) = \int_{-\infty}^{\infty} [v_{xx}(\bar{x}) \cos^2 \alpha + 2v_{xy}(\bar{x}) \cos \alpha \sin \alpha + v_{yy}(\bar{x}) \sin^2 \alpha]_{\overline{x} = (x + t \cos \alpha, y + t \sin \alpha)} dt.$$

Оператор Сен-Венана в случае *n*=*m*=2 имеет одну ненулевую компоненту

$$Wv = 2\partial_{xy}v_{xy} - \partial_{yy}v_{xx} - \partial_{xx}v_{yy}.$$

С помощью рассуждений, аналогичных использованным при выводе (39), легко показать, что

$$Wv = W_D v + W_{\gamma} v, \tag{44}$$

где

$$W_{D}v(x,y) = \begin{cases} 2\frac{\partial^{2}v_{xy}}{\partial x \partial y} - \frac{\partial^{2}v_{xx}}{\partial y^{2}} - \frac{\partial^{2}v_{yy}}{\partial x^{2}}, & \text{если} \quad (x,y) \in D, \\ 0, & \text{если} \quad (x,y) \notin D \cup \gamma, \end{cases}$$
(45)

387

а Шии — обобщенная функция с носителем на у, определяемая равен-CTBOM

$$\langle W_{\gamma}v, \varphi \rangle = \oint_{\gamma} \left[\left(\frac{\partial v_{yy}}{\partial x} - \frac{\partial v_{xy}}{\partial y} \right) n_x + \left(\frac{\partial v_{xx}}{\partial y} - \frac{\partial v_{xy}}{\partial x} \right) n_y \right] \varphi \, ds - \\ - \int_{\gamma} \left[\left(v_{yy}n_x - v_{xy}n_y \right) \frac{\partial \varphi}{\partial x} + \left(v_{xx}n_y - v_{xy}n_x \right) \frac{\partial \varphi}{\partial y} \right] ds. \tag{46}$$

Алгоритм определения W DU по IU состоит в следующем. Сначала находим тензорное поле µ== (µxx, µxy, µyy) на плоскости по формулам

$$\mu_{xx}(x, y) = \frac{1}{4\pi} \int_{0}^{2\pi} Iv(x, y, a) \cos^{2} a \, da,$$

$$\mu_{xy}(x, y) = \frac{1}{4\pi} \int_{0}^{2\pi} Iv(x, y, a) \cos a \sin a \, da,$$
 (47)

$$\mu_{yy}(x, y) = \frac{1}{4\pi} \int_{0}^{2\pi} Iv(x, y, a) \sin^{2} a \, da.$$

Затем определяем поле $v = (v_{xx}, v_{xy}, v_{yy})$ равенствами

$$v_{xx} = (-\Delta)^{1/2} \left(\mu_{xx} - \frac{1}{2} \mu_{yy} \right), \quad v_{xy} = \frac{3}{2} (-\Delta)^{1/2} \mu_{xy},$$
$$v_{yy} = (-\Delta)^{1/2} \left(\mu_{yy} - \frac{1}{2} \mu_{xx} \right). \tag{48}$$

Наконец, полагаем

1012

$$W_D v = W_D v = 2 \frac{\partial^2 v_{xy}}{\partial x \partial y} - \frac{\partial^2 v_{xx}}{\partial y^2} - \frac{\partial^2 v_{yy}}{\partial x^2}.$$
 (49)

Можно выразить через Iv и второе слагаемое из правой части (44), однако мы здесь этого делать не будем.

В настоящее время автор не имеет опыта вычислений по формулам (40)-(42) и (47)-(49) и потому не может сказать, насколько они приемлемы с точки зрения практического применения. Возможно, что для этой цели их надо предварительно каким-либо образом преобразовать. В связи с этим отметим, что эти формулы по своей структуре во многом аналогичны формуле обращения преобразования Радона (ср. с теоремой 3.1 из [9] в случае n=2), поэтому здесь можно воспользоваться опытом, накопленным в томографии [10].

Автор благодарит Х. Абена за обсуждение предмета работы.

ЛИТЕРАТУРА

- Абен Х. К. Интегральная фотоупругость. Таллинн, Валгус, 1975.
 Leray, Т., Scheibling, G. // J. Chim. Phys. (France), 1961, 68, № 9, 797—802.
 Абен Х. К., Индурм С. И., Иозепсон Ю. И., Келл К.-Ю. Э. // Оптическая томо-графия. Всесоюзн. сем., Таллинн, 1988. Тез. докл. Таллинн, 1988, 7.
 Шарафутдинов В. А. // Сиб. мат. журн., 1983, 24, № 6, 176—187.

- Шарафутдинов В. А. // Докл. АН СССР, 1986, 286, № 2, 305—307.
 Шарафутдинов В. А. // Докл. АН СССР, (в печати).
 Шарафутдинов В. А. // Всесоюзн. сем. по оптической томографии, Таллини, апрель 1988. Тез. докл., Таллини, 1988, 160.
 Cheng, Y. F. // Ехр. Месh., 1970, 10, № 2, 534—536.
 Хелгасон С. Преобразование Радона. М., Мир, 1983.
 Хелгасон С. Преобразование Радона. М., Мир, 1983.

- Хермен Г. Восстановление изображений по проекциям. Основы реконструктив-10. ной томографии. М., Мир, 1983.

Институт математики Сибирского отделения Поступила в редакцию Академии наук СССР 20/II 1989

V. ŠARAFUTDINOV

INTEGRAALNE FOTOELASTSUS NÕRGA OPTILISE ANISOTROOPIA KORRAL

On vaadeldud pingete määramist silindrilises z-teljega kehas nende mõõtmistulemuste põhjal, mis on saadud pinnaga z=0 paralleelsetel sirgetel. On eeldatud, et keha optiline anisotroopia on nõrk, ja näidatud, et niisugusel juhul saab määrata vaid pingetensori komponendi ozz.

V. SHARAFUTDINOV

ON INTEGRATED PHOTOELASTICITY IN CASE OF WEAK BIREFRINGENCE

Determination of stress in a cylindrical body with axis z on the basis of experimental data measured along all the lines parallel to the plane z=0, is considered on the assumption that birefringence is weak. It is shown that in this case it is possible to determine only the component σ_{zz} of the stress tensor.