LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ SHORT COMMUNICATIONS

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FUUSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1988, 37, 4

https://doi.org/10.3176/phys.math.1988.4.08

УДК 535.33

Инна РЕБАНЕ

ИСПОЛЬЗОВАНИЕ ИНТЕРФЕРЕНЦИИ И ДВУХСТУПЕНЧАТОГО ИМПУЛЬСНОГО ФОТОВЫЖИГАНИЯ ДЛЯ СУЖЕНИЯ СПЕКТРАЛЬНОГО ПРОВАЛА

INNA REBANE. INTERFERENTSI JA KAHEASTMELISE IMPULSSFOTOSÄLKAMISE KASUTAMINE SPEKTRAALSE SÄLGU KITSENDAMISEKS

INNA REBANE. THE USING OF INTERFERENCE AND TWO-STEP PULSED PHOTOBURNING TO NARROW THE SPECTRAL HOLE

(Представил В. Хижняков)

В [1] было теоретически показано, что при использовании двухступенчатого импульсного фотовыжигания спектрального провала в случае предельно короткого импульса на втором этапе возбуждения провал в функции неоднородного распределения (ФНР) частоты оптического перехода из основного на первый возбужденный уровень сужается с ростом промежутка времени между импульсами до величины $\Gamma+|\gamma_1-\Delta|$, где Γ и γ_1 — константы фазовой и энергетической релаксации первого возбужденного уровня и Δ — спектральная ширина первого импульса.

В данной работе найдена возможность сузить провал в ФНР до величины $|\gamma_1 - \Delta - \Gamma|$, используя на первом этапе возбуждения интерференцию добавочного предельно короткого импульса с импульсом спектральной ширины Δ .

Пусть первый этап частотно-селективного возбуждения в области неоднородно уширенной линии поглощения $0 \rightarrow 1$ осуществляется двумя импульсами: первым предельно коротким импульсом (δ -импульсом), проходящим центр системы в момент времени 0, и вторым, затухающим по экспоненциальному закону, когерентным импульсом (его частотное распределение имеет форму лоренциана). В этом случае функция, описывающая временное поведение выжигающего поля на первом этапе возбуждения имеет вид ($0 \ll T_1$):

$$g(t) = S_0 \delta(t) + \begin{cases} 0, \text{для } t < T_1, \\ \gamma \Delta \exp[-i\omega_0 t - \Delta(t - T_1)/2], \text{ для } t \ge T_1, \end{cases}$$
(1)

где T_1 — момент времени начала прохождения через центр системы второго импульса, ω_0 — центральная частота и Δ — спектральная ширина второго импульса (полная ширина на половине высоты), S_0 — константа.

Поглощение системой в возбужденном состоянии $(1\rightarrow 2)$ третьего, предельно короткого импульса, приводит к фотоионизации и выжиганию провала. В этом случае ФНР $\varrho(\Omega_{01})$ частоты Ω_{01} оптического перехода $0\rightarrow 1$ следующая [²]:

$$\varrho(\Omega_{01}) = \varrho_0(\Omega_{01}) [1 - P(\Omega_{01})], \qquad (2)$$

где $\varrho_0(\Omega_{01})$ — первоначальная ФНР. Вероятность выжигания $P(\Omega_{01})$, определяющая провал в ФНР $\varrho(\Omega_{01})$, имеет вид [³]:

$$P(\Omega_{01}) = \alpha \int_{T_2}^{\infty} dt_2 \int_{-\infty}^{T_2} dt \, dt' \, g^*(t') \, g(t) \, F(t_2, T_2, T_2, t, t').$$
(3)

Здесь а — вероятность фототрансформации с уровня 2,

$$\begin{aligned} (t_{2}, t_{1}, t'_{1}, t, t') &= C \exp\left[-\gamma_{2}t_{2} + i\Omega_{12}(t_{1} - t'_{1}) + (\gamma_{2} - \gamma_{1})(t_{1} + t'_{1})/2 + (t_{1} - t'_{1}) + (t_{1} - t'_{1}) + (t_{1} - t'_{1})/2 \right] \exp\left[-\Gamma(t_{1} - t_{1} + t'_{1} - t'_{1}) + (t_{1} - t'_{1})/2\right] \\ &+ |t_{1} - t'_{1}| + |t - t'| - |t'_{1} - t| - |t_{1} - t'|)/2 \right] \end{aligned}$$

$$(4)$$

— корреляционная функция трехуровневой системы. γ_1 и Γ — константы энергетической и фазовой релаксации первого возбужденного уровня, γ_2 — константа энергетической релаксации второго возбужденного уровня, Ω_{12} — частота перехода $1 \rightarrow 2$, *С* — нормировочная константа.

Подставляя формулы (1) и (4) в формулу (3) и интегрируя по формуле (3), получаем вероятность $P(\Omega_{01})$ в виде следующих трех слагаемых:

$$P(\Omega_{01}) = P_1 + P_2(\Omega_{01}) + P_3(\Omega_{01}).$$
(5)

Здесь

$$P_1 = \frac{\alpha C S_0^2}{\gamma_2} \exp\left(-\gamma_1 T_2\right) \tag{6}$$

не зависит от частоты перехода Ω_{01} (в рассматриваемом диапазоне частот Ω_{01}) и соответствует возбуждению (выжиганию) δ -импульсом.

Вероятность $P_2(\Omega_{01})$ соответствует возбуждению (выжиганию) вторым импульсом (спектральной ширины Δ):

$$P_{2}(\Omega_{01}) = \frac{aC\Delta}{\gamma_{2}} \left\{ \frac{(a+\Gamma)}{a} \left[x^{2} + \frac{(a+\Gamma)^{2}}{4} \right]^{-1} \exp(-\Delta T) + \frac{(a-\Gamma)}{a} \left[x^{2} + \frac{(a-\Gamma)^{2}}{4} \right]^{-1} \exp(-\gamma_{1}T) - 2\left[\left(x^{2} + \frac{(a+\Gamma)(a-\Gamma)}{4} \right) \cos(xT) + \Gamma x \sin(xT) \right] \left[x^{2} + \frac{(a+\Gamma)^{2}}{4} \right]^{-1} \times \left[x^{2} + \frac{(a-\Gamma)^{2}}{4} \right]^{-1} \exp\left[-\frac{1}{2} (\Delta + \gamma_{1} + \Gamma)T \right] \right\},$$
(7)

где $a = \gamma_1 - \Delta$, $x = \Omega_{01} - \omega_0$ и $T = T_2 - T_1$.

Из формулы (7) следует (см. также рис. 1—3), что с увеличением времени T между вторым и третьим импульсами соответствующий вероятности $P_2(\Omega_{01})$ провал монотонно сужается. Предельная (при $T \rightarrow \infty$) ширина провала определяется параметром $\Gamma + |\gamma_1 - \Delta|$.

Вероятность $P_3(\Omega_{01})$ соответствует возбуждению (выжиганию) интерференционным членом, возникшим вследствие интерференции первого и второго импульсов (см. рис. 1)

Рис. 1. Провалы в ФНР $\varrho(\Omega_{01})$, соответствующие возбуждению вторым импульсом (штриховая линия), интерференционным членом (штрих-пунктирная линия). Параметры: $\Gamma = 0,8\gamma_1$, $\Delta = = 0,199\gamma_1$, $S_0 = 1$; $a - T_1 = 0,5\gamma_1^{-1}$, $T_2 = 4\gamma_1^{-1}$; $\delta - T_1 = 2\gamma_1^{-1}$, $T_2 = 4\gamma_1^{-1}$; $s - T_1 = 4\gamma_1^{-1}$, $T_2 = 5\gamma_1^{-1}$.

Рис. 2. Провалы в ФНР $\varrho(\Omega_{01})$, соответствующие возбуждению вторым импульсом (штриховая линия), интерференционным членом (штрих-пунктирная линия). Параметры: $\Gamma = 0.5\gamma_1$, $\Delta = 0.501\gamma_1$, $T_1 = 0$; $a - T_2 = 8\gamma_1^{-1}$, $d_1 = 0.9 \cdot 10^{-2}$; $\delta - T_2 = 10\gamma_1^{-1}$, $d_1 = 0.4 \cdot 10^{-2}$; $\beta - T_2 = 12\gamma_1^{-1}$, $d_1 = 0.1 \cdot 10^{-2}$.

Рис. 3. Провалы в ФНР $\varrho(\Omega_{01})$, соответствующие возбуждению вторым импульсом (штриховая линия), интерференционным членом (штрих-пунктирная линия). Параметры: $\Gamma = \gamma_1$, $T_1 = 0$; $a - \Delta = 0,001\gamma_1$, $T_2 = 6\gamma_1^{-1}$, $d_1 = 0,3 \cdot 10^{-2}$; $\delta - \Delta = 0,001\gamma_1$, $T_2 = 8\gamma_1^{-1}$, $d_1 = 0,6 \cdot 10^{-3}$; $s - \Delta = 0,001\gamma_1$, $T_2 = 10\gamma_1^{-1}$, $d_1 = 0,1 \cdot 10^{-3}$; $s - \Delta = 0,001\gamma_1$, $T_2 = 10\gamma_1^{-1}$, $d_1 = 1$; $\partial - \Delta = 0,501\gamma_1$, $T_2 = 10\gamma_1^{-1}$, $d_1 = 1$, $d_1 = 1$.

$$P_{3}(\Omega_{01}) = \frac{aC\sqrt{\Delta}S_{0}}{\gamma_{2}} \left[x^{2} + \frac{(a-\Gamma)^{2}}{4} \right]^{-1} \left\{ \left[(a-\Gamma)\cos\left(xT_{2}\right) + 2x\sin\left(xT_{2}\right) \right] \times \left[-\frac{1}{2}\left((\gamma_{1}+\Gamma)T_{2}+\Delta T\right) \right] - \left[(a-\Gamma)\cos\left(xT_{1}\right) + 2x\sin\left(xT_{1}\right) \right] \times \left[-\frac{1}{2}\left(\gamma_{1}+\Gamma\right)T_{1}-\gamma_{1}T \right] \right\}.$$
(8)

В точке $\Omega_{01} = \omega_0$ при $0 \leqslant T_1$ отношение вероятностей равно $P_2(\omega_0)/P_3(\omega_0) = d \exp(\Gamma T) \Gamma^{-2} T^{-1},$

где $d = \sqrt{\Delta} S^{-1}$.

Отсюда видно, что для выполнения условия P3 »P2 с ростом T необходимо уменьшить параметр d. Из формулы (8) следует (см. также рисунки), что при каждом $\Gamma < \gamma_1$ можно подобрать Δ таким образом, чтобы выполнялось условие $\gamma_1 - \Gamma - \Delta = 0$. Тогда с ростом времени Tширина провала (точнее центрального минимума) в ФНР, определяемого вероятностью P₃, стремится к нулю. Если P₃≫P₂ (на рис. 2 и 3 (a-s) выбран параметр d так, что $P_3 \ge 4P_2$), то и ширина суммарного провала с ростом T стремится к нулю. При $\gamma_1 < \Gamma$ ширина провала с ростом T стремится к значению Г+ Δ - v_1 . Следовательно, при $v_1 \leqslant \Gamma$ наиболее узкие провалы получаются при $\Delta = 0$, что соответствует включению незатухающего возбуждения в момент времени Т₁.

Автор благодарен В. Хижнякову и К. К. Ребане за обсуждение работы.

ЛИТЕРАТУРА

- Rebane, I., // Phys. status solidi (b), 1988, 145, 749—757.
 Rebane, L. A., Gorokhovskii, A. A., Kikas, J. V. // Appl. Phys. B., 1982, 29, 235—250.
 Ребане И. // Изв. АН ЭССР. Физ. Матем., 1986, 35, № 3, 296—301.

Институт физики Академии наук Эстонской ССР 14/1 1988

Поступила в редакцию

(9)