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In this paper the systematic study of massless representations of the Poincare
group is given. When the finite dimensional representations of the homogeneous Lorentz
group are used, the classification of massless representations differs from that given by
Wigner. There exists only one necessary condition: the eigenvalues of the second Casimir
operator must vanish. It appears that for a given representation all helicities are allowed.

1. Introduction
The important role of the Poincare group in the field theory was disco-

vered by E. P. Wigner [*], who gives also the method for classification
of irreducible representations known as the little group method. One of
the possible realizations of physical representations, using Lorentz bispi-
nors, was given in [2 ].

Proceeding from the Wigner analysis of Poincare representations,
S. Weinberg established the well-known result [ 3 ]: when the irreducible
representation {k, I) of the homogeneous Lorentz group is used to describe
massless states, one can have only X=zt{k /) helicities. The Weinberg
theorem is analysed in the textbook [4], where it is also stated that the
possible helicities are limited to ±{k /).

Recently the discussion of massless representation of the Poincare
group was given in [ 5 - 6]. In these papers the nature of Lorentz group
representations of massless particles in the covariant field theory with
indefinite metric is clarified and contrasted with that in the Wigner’s
theory. The authors come to the conclusion that in the covariant theory,
finite-dimensional representations other than one-dimensional, are
possible. They also prove that massless particles cannot be specified by
the helicities only, but must be distinguished also by the types of fields
describing them. It was stated [ 5 - 6 ] that the requirement when the little-
group translations must vanish, is not needed. It should be mentioned
that this statement was also given in [7].

In this paper we give a more systematic study of massless representa-
tions of the Poincare group in the covariant field theory where the finite
dimensional representations of the homogeneous Lorentz group are used.
When using the representations of the homogeneous Lorentz group, it is
necessary that the eigenvalues of the second Casimir operator vanish. The
condition that the little-group translations vanish, which leads to the
Weinberg theorem, is not needed and may be treated as some subsidiary
condition which separates certain specific helicities. In the general case
for the representation {*k, I) all helicities r K=k-\-l, ..., (&+0 are allo-
wed. The role of covariant wave equations in the field theory is to sepa-
rate desired helicities. Therefore the general classification of massless
representations in the covariant field theory is different from the Wigner’s
analysis,
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2. Poincare group

The generators of the Poincare group Afpv
, Pv satisfy the following

commutation relations [ l2]

[рд,Р']= o, (2.1)
[M^ v, P p ] = r]vp P p — r] ppP v

,

[Mpv
, AIpcr ] =r] vpMpa-j-r]p 'CT .Mvp T]ppM va r] vffMpp

,

where r] pv = diag(-| ). The eigenvalues of Casimir operators
(2.2)

w= —
ppPvM,xpMvp (2.3)

label the irreducible representations of the Poincare group. Here W* is
the Pauli-Lubanski pseudovector

=
_L gP vpapv^fp0 > (2.4)

In physics more interesting are the massive representations when P 2
=

m2 >o and the massless representations when P 2 =o.
In this section we briefly recall the construction of massive represen-

tations. The construction of irreducible representations is more clear via
the Wigner little-group method. Working in the momentum representa-
tion we have, when P2=m2 >o, a system where the momentum takes the
form

P'x = (cm, 0,0,0), (2.5)
where e is the sign of energy e =p°/\p°\. The little group of transforma-

A. A A

tions pp =Pp vP v
, which leaves p p unchanged, is the group of three dimen-

sional rotations SO(3). It appears that in the rest of the system (2.5)
the components of W p also satisfy the same commutation relations as the
generators of the little group, and W 2 is related with the Casimir operator
of the little group. Therefore the irreducible state at the rest \{m,s)pa)
is defined in the following way

P2 | (m, s)pa> = m2 | (m, s)pa},

W 2 \ {m, s)poy=m2S2 \ (m, s)po}= m2s (s-f 1) | (m, s)pa>,

Ss l (m, s)po}= iMiZ \ (m, s)pa)=-a| (m, s)pa}. (2.6)
The irreducible representation is characterised by mass m and spin s.
The components of the corresponding state are labelled by the spin pro-
jection a. The state of the system with arbitrary momentum /? p

= L p vp v

is given by the boost transformation U(L)

I (m, s)po} U(L) I (m,s)po>. (2.7)

3. Massless representations
In the massless case P2= 0 the same method of induced representa-

tions was used by Wigner in his pioneering work [ l ]. As we shall see in
the following, the little group method does not work so well now as itdid in the massive case.
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In the massless case we can take a system where

p* =p{e, 0,0, 1). (3.1)
A. A

Now the little group of transformations p^=T^^pv is the two-dimensional
A

Euclidean group E(2). The components of W* in the p system are
W°=eW3=r—pM 12

,

Wl =p{—(3.2)
W2=p{-eM 3i -\-M0').

It is easy to verify that the generators
ш°=Л4 12, wi =—eM23-(-Td:20 ,

ш2=— eM3k-fM01 (3.3)
also satisfy the commutation relations of E(2)

[w l
,

ay2 ]=o, [w°,w i ]=w2
, [w°,w2] = —wl

. (3.4)
It follows from (3.4) that wl and w 2 are the generators of two-dimen-

sional translations.
The second Casimir operator Wz is expressed as

W 2=—p2{{wl ) 2+{w2 )2 ). (3.5)
A A A

The state \pX} of the p system satisfies P2 \pX}=O. In order to obtain
finite-dimensional representations, one must demand that the eigenvalue
of W 2 also equals zero

W2 \pX} = 0, (3.6)
since W 2 depends on translation operators w 1 and w 2. In order to satisfy
(3.6) one must require in addition that

wl \pX} = w2 \pX} = 0. (3.7)
In the massless case, as we have seen, the invariant operators P 2 and

W 2 do not classify the different irreducible representations. Using the
analogy with the massive case where give the generators of the little
group, Wigner had demanded that the irreducible representations were
classified by the irreducible representations of the little group. Since the
translations of the little group vanish due to (3.7), the irreducible repre-
sentations are classified by the eigenvalues of rotation operator w°. There-
fore the irreducible state is determined by

S3 l pX) = iM'2 1 pX} =X I pX>- (3.8)
Thus, the irreducible representations are labelled by the helicity X.

The classification of irreducible representations in the massless case
is not so direct as it is in the massive case. Moreover, this classification
does not follow directly from the invariants P 2 and W 2. For that reason
it is not obligatory that the irreducible representations correspond to the
single helicity X. The photon, for example, has A, = ±l.

In this section we outlined the principles used for the general classi-
fication of massless representations. In physical applications the repre-
sentations of the homogeneous Lorentz group scalars, spinors, vec-
tors, etc. are used, and on that basis one should construct the realization
of Poincare representations. As we shall demonstrate in the next section,
the above-mentioned realization offers more flexibility. The requirement
(3.7) for example, is not needed,
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4. Realization of massless representations using Lorentz representations

In the field theory the representations of the homogeneous Lorentz
group are used. In order to construct the Poincare representations, one
must find the Casimir operators P 2 and W 2, and investigate their eigen-
values. As we shall see, this realization is somewhat specific and allows
more flexibility.

Using the Lorentz field xj) we have the following Poincare generators
in the momentum representation [2 ]

Pv=pv } Affxv =L*iV-|-5* A'v
, (4.1)

where L^=p^d/dp x p v are the generators of the angular momen-
tum and are the generators of the Lorentz group corresponding to the
field x|).

Wv- and W 2 are now expressed by and only

= -i- B%a/7vSP*, 8%a/7vSP*,
(4.2)

№2 =—r p 2 —p»pvS wS xp.

This fact turns out to be significant in the further considerations.
In the following part of this section we examine the same conditions

that have been established in the analysis of massless representations
by E. P. Wigner and obtain the result which is known as the Weinberg
theorem [ 3 ]. i.e. if xj) carries the irreducible representation (k, I) of the
homogeneous Lorentz group, only the helicities 7=± {'k —I) are allowed.

We shall give a simple proof of the Weinberg theorem using the cano-
nical basis for Lorentz generators. This form of canonical basis was
previously used in [ 7 ],

Consider the irreducible field xR carrying the representation (k, I).
Following (3.7), we demand

tcPxj) =ny2 xl) =O. (4.3)
A

Using (4.2), we obtain for w'°, wl , w 2 in the p system
tyO=Sl2 , w1— —eS23-(-520

, w2
— —es'31 -j-5 01

. (4.4)
In order to analyse the conditions (4.3), it is convenient to use the cano-
nical basis for Lorentz generators, choosing the Cartan sub-algebra in the
following way

Hx—Sm
, H2 =iSi

2. (4.5)
The generators Ei, ..., Ek are given by

Ei = ul 4-m2 , E2 =vl iv 2,
(4.6)

E3=v3 iu4
, Е^=и3 iv^,

where vl— wl | e=i, u2 =w2 1 e=i, u 3=^1 |B=-i8=-i and vlt—w2 \ E=-. l .

To any irreducible representation {k, I) corresponds the weight dia-
gram (Figure). The points inside the parallelogram (h,X) correspond to
the components x|?/,x, with H x \\-,hl=li^hl and H All points are
single. The action of generators Ei, ..., £4 is the following

Eityhx ~ 4)/h-im-i, Etfjph я, ~ tyh+i x-i,
(4.7)

Estyia ~xjjft-i л-i, АТфад ~ xj)h-i я+i.
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Now we turn to the analysis of conditions (4.3). Taking e = -f-l in
(4.3) one has

(4.8)
Using (4.7) and Figure it is easy to verify that this condition is satisfied
only for the right edge point

h—hmax —k-{-l, i= {k I). (4.9)
Taking e= 1 it follows from (4.3)

£з^л=£,4'фм,=o. (4.10)
The last condition is satisfied only in the case of the left edge point

h=hmin=— (&+/), l—k —l. (4.11)

The results (4.9) and (4.11) prove the Weinberg theorem, i. e.
=±{k I) if (4.3) is satisfied. Using the Cartan basis for we have
also obtained that in the massless case the physical state is also the eigen-
state of operator H l =£03 .

Therefore, following the same procedure as in Section 3, we immedia-
tely arrive at the Weinberg’s theorem. It should be mentioned that this
theorem yields a severe restriction for the possible description
of massless states. Photon, for example, cannot be described by the
vector representation (1/2, 1/2) —/U, since then X=o. X=±l helicities
may be described by the antisymmetric tensor field which carries
(1,0) 0 (0, 1).

In the next section we shall demonstrate that the condition (4.3) is
not needed in general and may be treated as some additional restriction.
This fact was already demonstrated in [ 7], where it was also proved
that the operators w 1 and w 2 have only zero eigenvalues.

5. Massless representations which avoid the Weinberg theorem
In the third section it was demonstrated that in the massless case

the eigenvalue of the second Casimir operator W 2 must vanish. When
using the Lorentz fields this condition must be preserved, therefore we
demand

W =O. (5.1)
In this section we demonstrate that the conditions (4.3) are not need-

ed. At first we show that for W 2 there are only zero eigenvalues because
W 2 is nilpotent and no additional conditions above (5.1) are needed.

The nilpotency of W 2 follows
from the fact that it is expressed
through the nilpotent operators
E i, ...,

£4. In the case of an irre-
ducible representation ( k, I) we
have (£i,3) 2/+1 = 0 and (£2,4) 2fe+l =O.
These conditions may be most easi-
ly verified using (4.7) and the
weight diagram (Figure).

Weight diagram of the representation
k>l
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Using the p system we, in the e=.-j-l case, may express W 2 as W2=
=

— Ap 2EiE2 and, in the e= 1 case, as W 2—

— Ap2E3Eil . Since E i, E 2 and
E 3, £4 mutually commute, we have (lU 2 ) 2a+l =O, where a=min(&, /),

which proves the nilpotency of W 2. Therefore W 2 has only zero eigen-
values.

In Section 3 the conditions wh\> = w2ty = 0 were needed to give
1U2i|) =O. In our case W2\J) = 0 follows from the nilpotency of W 2 and
therefore no more additional conditions are needed. For that reason the
Weinberg theorem must be treated as some additional condition which
separates X=±{k I) helicities.

Now we analyse what possibilities we have, demanding only (5.1):
1. If e=+l, IF2\J) =0 gives, in the p system, £

IF'2ip =O. In the weight
diagram this conditions separates all the rightside edge points with
helicities X=k-\-l, ..., (&-)-/) .
2. If e= — 1, lF2,ij) =0 gives £3F4iJ) =o.Now the same helicities are sepa-
rated as in the previous case, but they correspond to all leftside edge
points.

Therefore we have seen that in the case of representation (k , /) all
the helicities X=k-\-l, ...,

—(k-\-l) are, in principle, allowed. In general
they correspond to different eigenvalues of Hi = S O3 operator. In the case
of representation (1, 1/2), for example, we have for e=-}-l the following
possibilities: h =

— l/2, A, = 3/2; /i= 1/2, I=l/2 and —3/2; h = 3/2,
X=—l/2. For a given eigenvalue h there are one or two possible heli-
cities. In order to extract the helicities corresponding to a given h,
additional conditions are needed. In the field theory relativistic wave
equations are playing the role of such conditions which can extract
the desired helicities from a given representation.

In conclusion, we have arrived at the following result: using the
Lorentz representations (scalars, spinors, ...) it is possible to describe
all helicities. In order to extract the desired helicities, additional condi-
tions must be used. In the next section we give two different types of
wave equations. Following the Weinberg theorem it is possible to obtain
a set of wave equations which describe !=+(& —/) helicities. The
other set of massless wave equations is the set of gauge invariant
equations, where the gauge freedom is used to describe needed helicities.

6. Massless wave equations

6.1. Wave equations and the Weinberg theorem.
Using the irreducible representation (&,/), it is possible to give the
following massless wave equation [7]

{k+l)d vty. (6.1)
Applying dv, we obtain □'ф =O.

In order to verify that this equation describes helicities ±{k I), we
go to the momentum representation and use the system with pv=
=p{e, 0,0, 1). Taking v= 0 and v= 3 in (6.1), we obtain

sш'ф5ш 'ф = е(^+/)гJ). (6.2)
For v= 1 and v= 2, we obtain

(eS 01 531 )г}) =O, (e5 02 532 )\f) =O. (6.3)
We treat (6.2) as an equation and (6.3) as subsidiary conditions. If e=
=+l, (6.3) is equivalent to FlxJ)=F2 il) =0 and if e=—l, (6.3) is
equivalent to E =o. Both conditions are equivalent to ££dib=;
= ш2 i|)== 0 and extract the helicities Я,= — I).
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If, instead of the irreducible representation (k, /) we use some redu-
cible representation, the same considerations are valid. One can represent
xj) as a direct sum of irreducible representations {ki,U), and for each
irreducible representation the helicities h =zt{ki — U) are separated.

The equation (6.1) was given in [8 - 9 ], and recently in [lo ], In the
special case of representations (s, 0) and (0, s) similar equations were
given in [3 ] and [и ]. It should be mentioned that V. Bargmann and
E. P. Wigner proposed in p] the following equation

= i[k I)dHJ), (6.4)
which in [lo ] was given in the following form

(k —l)dv\p, (6.5)

where e^poS**7 . It is possible to verify that (6.1) and (6.5) are

equivalent, if кфl.
We conclude this Section with two examples.
1. Representation (1/2, 1/2). Using the vector field A ll and the

corresponding generators S^v
, we obtain from (6.1)

dMv р^рЛР=O. (6.6)

Equation (6.6) describes 7=o.
2. Representation (1,0) 0(0,1). Using the antisymmetrical tensor

field F^ v we obtain the equation
Öp/7nv_j_^v/Tpn_p ( sn/rvp_|_ri pn^ (j/70V_ ri pv^CTfO lx= O. (6.7)

This set of equations is equivalent to the Maxwell equations and there-
fore describes 7=+l.

It should be remarked that the construction of Lagrangians corres-
ponding to (6.1) is more complicated. Due to the additional vector index
in (6.1), it is not easy to find a correct Lagrangian and to develop the
corresponding Lagrangian field theory. In the case of antisymmetrical
tensor field 7> v an attempt to use the vector Lagrangian was made in
[ l2 ]. An additional vector 7м

-, satisfying №ф o, was introduced in [l3 ],

and the Lagrangian L =7 v (dpS^ v — {k-\-l)dv )F for F^ v was proposed.
Similar Lagrangian can be used in the case of all equations (6.1). How-
ever, the physical meaning of 7A vector is not completely clear.

6.2. Gauge invariant wave equations. The second and
mostly used possibility to describe massless field is to exploit the gauge
invariant wave equations. The boson fields are usually described by the
second order wave equations

dlld (6.8)
and the fermion fields are described by the first order wave equations

д[х = 0. (6.9)
In both cases the equation is invariant with respect to some gauge

transformation
6xj;= f(d)e, (6.10)

where f{d) is a first order differential operator and e is some gauge
parameter. The gauge transformations allow to eliminate unwanted heli-
cities. In this paper we do not give any detailed discussion of massless
gauge fields. Some recent results exploiting the formalism of covariant
spin projectors are given in [ l4- 15].

This Section we also conclude with two examples,
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1. Representation (1/2, 1/2). The gauge invariant wave equation for
A p is the following

□Л'* (?^cM v =O. (6.11)
Equation (6.11) is invariant with respect to gauge transformation

6 (6.12)

where g is a scalar field. Equation (6.11) is the well-known field equa-
tion, describing the electromagnetic field with helicities ±l.

2. Representation (1,0) 0 (0,1). The antisymmetrical tensor field
F^ v allows to obtain two gauge invariant equations both describing л=o.
The first equation

□ /7(xv _ dvdpFw=o (6.13)
is invariant with respect to the gauge transformation

6fpv _gnev
_ elx 5 (6.14)

where e ll is a vector field. The second equation
dvdpFP v dv dpFPv=0 (6.15)

is invariant with respect to
õF^=e^Padpea

. (6.16)

The first equation (6.13) was given in [l6 ], where an object described
by F^ v , was called «notoph» in contrast to photon described by the Max-
well equations (6.7). Both (6.13) and (6.15) follow from a single gene-
ral gauge invariant equation for F^ v .

These examples demonstrate that depending on the field equation
one can describe different helicities. In the case of vector field A p it is
possible to describe Ä,=o or Я— + 1 the same helicities can be described
by using antisymmetrical tensor field F^v . The given examples are in
accordance with the general condition \Е2 г|з =O.

7. Conclusions

In this paper the general description of massless states in the field
theory is analysed. It appears that the general classification of massless
representations of the Poincare group differs from the standard one due
to using the representations of the homogeneous Lorentz group. The
second Casimir operator W 2 is expressed by Lorentz generators
which are finite-dimensional matrices. For this reason W 2 is nilpotent
and therefore one must demand only =o. The last condition allows
different helicities t© be described using the field ip. In order to describe
states with fixed helicities invariant wave equations are needed. One set
that has been discussed satisfies the Weinberg theorem. The other set,
which consists of gauge invariant equations, describes helicities that are
not allowed by the Weinberg theorem. The main result is that in the
case of representation {k, I) all helicities h=k\-\-l, ..., —(k-\-l ) are
possible.

In conclusions it should be remarked that there are some more possible
realizations of massless states. In the A,=o case the following first order
realization is possible

oичр=4и-,
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This realization can be expressed in the general form as

where (3 is a singular matrix. Equations in this form were first discussed
in [ l7 ] and afterwards they have also been proposed in [ lB]. Recently the
Fronsdal massless equations were given in this form in [ l9 ].
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М. KÕIV, R.-K. LOIDE, I. OTS. R. SAAR
POINCARE RÜHMA MASSITA ESITUSTEST

On antud Poincare rühma massita esituste süstemaatiline analüüs. Homogeense
Lorentzi rühma lõplikdimensiooniliste esituste kasutamisel erineb massita esituste klassi-
fitseerimine Wigneri analüüsist. Sel juhul on ainult üks tarvilik tingimus: teise Casimiri
operaatori omaväärtuste võrdumine nulliga. Võib kirjeldada spiraalsusi, mis rahuldavad
Weinbergi teoreemi, kuid ka kõiki teisi spiraalsusi.

М. КЫИВ, P.-к. ЛОНДЕ, И. ОТО, Р. СААР
О БЕЗМАССОВЫХ ПРЕДСТАВЛЕНИЯХ ГРУППЫ ПУАНКАРЕ

Проведено систематическое исследование безмассовых представлений группы
Пуанкаре. Когда применяются конечномерные представления однородной группы
Лоренца, классификация безмассовых представлений отличается от анализа Вигнера.
Имеется только одно необходимое условие равенство нулю собственных значений
второго оператора Казимира. Можно описывать спиральности, удовлетворяющие тео-
реме Вайнберга, но и все остальные спиральности.
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