LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ SHORT COMMUNICATIONS

https://doi.org/10.3176/phys.math.1987.4.08

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1987, 36, 4

УДК 514.752.44: 514.764.227

U. LUMISTE

DECOMPOSITION AND CLASSIFICATION THEOREMS FOR SEMI-SYMMETRIC IMMERSIONS

- U. LUMISTE. POOLSÜMMEETRILISTE SISESTUSTE DEKOMPOSITSIOONI- JA KLASSIFIKAT-SIOONITEOREEMID
- *Ю. ЛУМИСТЕ,* ТЕОРЕМЫ О РАЗЛОЖЕНИИ И КЛАССИФИКАЦИИ ПОЛУСИММЕТРИЧЕСКИХ ПОГРУЖЕНИЙ

(Presented by G. Vainikko)

Let $f: M^m \to E^n$ be an isometric immersion of an *m*-dimensional Riemannian manifold (M^m, g) into an *n*-dimensional Euclidean space E^n . Let $\overline{\nabla}$ and a_2 be its van der Waerden — Bortolotti connection and the second fundamental form, respectively. If $\overline{\nabla}a_2=0$, then f is a locally symmetric immersion [1,2] and M^m is a locally symmetric space (by E. Cartan). The integrability condition of the differential system $\overline{\nabla}a_2=$ =0 is the symmetricity of $\overline{\nabla}_X \overline{\nabla}_Y a_2$ with respect to tangent vectors Xand Y (or, equivalently, the condition $\overline{\Omega} \cdot a_2=0$, where $\overline{\Omega}$ is the curvature form operator of $\overline{\nabla}$). An immersion f satisfying this condition is called semi-symmetric (cf. [³] where the term «semi-parallel» is used); then M^m is a semi-symmetric Riemannian manifold in the sense of [4, 5, 6]. If, particularly, $\overline{\nabla}_X \overline{\nabla}_Y a_2=0$ for every X and Y, then f is said to be an immersion with parallel third fundamental form $a_3=\overline{\nabla}a_2$ [^{7,8}].

In [9, 10] some decomposition theorems were given for the last case. They can be generalized to the case of semi-symmetric immersions as follows.

Let *H* denote the mean curvature vector of the immersion f and a_2^H the second fundamental form corresponding to *H*. In every point $x \in M^m$ the form a_2^H is a real symmetric bilinear form.

An immersion f is called a product of immersions $f_{\varphi}: M^{m_{\varphi}} \rightarrow E^{n_{\varphi}}$, $\varphi \in \{1, 2, ..., s\}$, if (1) $M^m = M^{m_i} \times ... \times M^{m_s}$, (2) $E^n = E^{n_i} \times ... \times E^{n_s}$, (3) any two distinct $E^{n_{\varphi}}$ and $E^{n_{\psi}}$ are totally orthogonal. If f is a semisymmetric immersion (resp. an immersion with $\nabla \alpha_3 = 0$), then every f_{φ} is semi-symmetric (resp. with $\nabla \alpha_3 = 0$), and vice versa.

Theorem 1. Let $f: M^m \rightarrow E^n$ be a semi-symmetric immersion and U^m an open part of (M^m, g) , on which a_2^H has distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of constant multiplicities ($r \leq m$). Then the corresponding eigenspaces form r foliations $\Delta_1, \ldots, \Delta_r$ on U^m which are pairwise conjugated with respect to g and α_2 (i.e. $g(\Delta_{\rho}, \Delta_{\sigma}) = 0$ and $\alpha_2(\Delta_{\rho}, \Delta_{\sigma}) = 0$, if $\rho \neq \sigma$). Let $\Delta'_1, \ldots, \Delta'_s$ be direct sums of $\Delta_1, \ldots, \Delta_r$ such that $\Delta'_{\varphi} \cap$ $\bigcap \Delta'_{\psi} = \{0\}$, if $\varphi \neq \psi$, and $\Delta'_1 \oplus \ldots \oplus \Delta'_s = TU^m$. Let every Δ'_{φ} be parallel in the Levi-Civita connection ∇ of g. Then around every point $x \in U^m$ the immersion f coincides with a product of semi-symmetric immersions

 $f_{\varphi}: U^{m_{\varphi}} \to E^{m_{\varphi}}$, where $U^{m_{\varphi}}$ is a leaf of Δ'_{φ} . Remark that the first part of Theorem 1 can be deduced from [7], (Theorem 5), stating before that in the case of semi-symmetric immersion f the mean curvature vector H is a commutating vector in the sense of ⁷]. The second part of Theorem 1 can be considered as a consequence from the first one and from the local version of the fundamental lemma, given in [11] in a global formulation. In fact a direct proof of Theorem 1 exists by straightforward computation using the adapted orthonormal frame bundle and Cartan's method: derivation formulas, exterior differential calculus, curvature forms, etc. Replacing in Theorem 1 the words «semi-symmetric immersion» by «immersion with $\nabla \alpha_3 = 0$ » (in two places), we get the corresponding theorem in [10].

Theorem 2. Let f, U^m , and $\Delta'_1, \ldots, \Delta'_s$ be as in Theorem 1 and let $\lambda_r=0, \Delta'_s=\Delta_r$. Suppose there is an orthogonal direct decomposition $\Delta'_s=$ $=\Delta_s^{(1)}\oplus\ldots\oplus\Delta_s^{(s)}$, so that $\Delta_1^*,\ldots,\Delta_s^*$ are parallel in ∇ , where $\Delta_{\chi}^*=$ $=\Delta'_{\chi} \oplus \Delta^{(\chi)}_{s}$, if $1 \leq \chi \leq s-1$, and $\Delta^*_{s} = \Delta^{(s)}_{s}$ (the possibility that some of $\Delta_s^{(q)}$, $1 \leq q \leq s$, are $\{0\}$, is not excluded). Then around every point $x \in U^m$ the immersion f coincides with a product of semi-symmetric immersions $f_{\varphi}: U \xrightarrow{\varphi} E^{m_{\varphi}}$, where $U^{m_{\varphi}}$ is a leaf of Δ^* .

This theorem is a light extension of Theorem 1.

These two decomposition theorems have valuable applications to the problems of local classification of semi-symmetric immersions. All semisymmetric surface immersions (m=2) are described in [3], where the author of [3] announces that he has a classification of semi-symmetric hypersurface immersions (n=m+1), too. Those of them which have parallel α_3 (i.e. $\nabla \alpha_3 = 0$), were found out independently in [8].

The following two theorems give the local classification of all twocodimensional semi-symmetric immersions (and immersions with $\nabla \alpha_3 =$ =0 among them).

Firstly we give a list of immersions proved to be semi-symmetric:

(1) plane immersion: $f(M^m) = E^m$ is an *m*-dimensional Euclidean subspace (*m*-plane) in E^n ,

(2) sphere immersion: $f(M^m) = S^m$ is an orbit (*m*-sphere) in E^{m+1} described in all rotations around a fixed point (centre) by a point different from it,

(3) round cone immersion: $f(M^m) = C^m$ is a regular part of an *m*-cone of revolution in E^{m+1} generated in all rotations around a fixed onedimensional axis by a straight line having a common point (vertex) with it.

(4) rank 1 immersion: $f(M^m)$ is a regular part of the envelope of a one-parameter family of *m*-planes in E^n ,

(5) rank 2 immersion with flat $\overline{\nabla}$: $f(M^m)$ is a regular part of the envelope of a two-parameter family of m-planes in E^n , $n \ge m+2$, and f has flat ∇ (i.e. $\Omega \equiv 0$),

(6) orthogonal canal immersion: $f(M^m) = S^m$ is a regular part of the envelope of a one-parameter family of *m*-spheres S^m in E^n , $n \ge m+2$, and the principal (or the first) normal of the orthogonal trajectory of the family of characteristic (m-1)-spheres on S^m is everywhere orthogonal to the (m+1)-plane of the family *m*-sphere S^m ,

(7) orthogonal canal cone immersion: $f(M^m) = \tilde{C}^m$ is a regular part of the envelope of a one-parameter family of round cones \tilde{C}^m with a common vertex in E^n , such that the intersection of the envelope and an (n-1)-sphere around the vertex is a noneuclidean analogue to the previous case.

The classification theorem for semi-symmetric immersions of codimension ≤ 2 states the following.

Theorem 3. Every semi-symmetric immersion $f: M^m \rightarrow E^{m+2}$ locally coincides

(i) with one of hypersurface immersions (2)-(4) or with its product by an identity plane immersion (i.e. immersion (1) in the case m=n) superposed by a hyperplane immersion, or

(ii) with one of (1), (4)-(7) in the case n=m+2 or

(iii) with a two-codimensional product of several of these immersions. Remark that (i) gives a full description of semi-symmetric hypersurface immersions. Note also that plane immersions (1) have $a_2=0$, sphere immersions (2) and their products by identity plane immersions have $\nabla a_2=0$. These are only hypersurface immersions with $\nabla a_2=0$. In the case of codimension 2 only products of two sphere immersions and their products by identity plane immersions are to be added to get all immersions with $\nabla a_2=0$ and codimension ≤ 2 .

The next theorem gives the classification of all other two-codimensio-

nal immersions with $\nabla \alpha_3 = 0$ (recall that $\alpha_3 = \nabla \alpha_2$).

Theorem 4. Any two-codimensional immersion with parallel $\alpha_3 \neq 0$ locally coincides

(a) with a product of a clothoid immersion by an identity plane immersion superposed by a hyperplane immersion, or

(b) with a product of a clothoid immersion by clothoid or spherical immersion and by an identity plane immersion, or

(c) with a product of a spherical clothoid immersion by an identity plane immersion, or

(d) with a product of a twisted spherical clothoid binormal regulus immersion by an identity plane immersion.

Here the identity plane immersion can be trivial (i.e. (1) with m = n = 0) and not essential in products.

The immersions with $\nabla a_3 = 0$ listed in Theorem 4 as the first components of products are found in [8] by classification of surface immersions with $\nabla a_3 = 0$, and are as follows.

In the case of clothoid immersion $f(M^1)$ is a line in E^2 with natural equation k=as. In the case of spherical clothoid immersion $f(M^1)$ is a line on S^2 in E^3 with geodesic curvature $k_g=as$. In the case of twisted spherical clothoid binormal regulus immersion $f(M^2)$ is a surface in E^4 , generated by great circles of a S^3 binormal to a line on S^3 with the geodesic first curvature $k_g=as$ and the geodesic second curvature $\varkappa_g=$

 $=\pm \frac{1}{r}$, where r is the radius of S³.

REFERENCES

- Ferus, D. Math. Z., 140, 87–93 (1974).
 Ferus, D. Math. Ann., 247, 81–93 (1980).
 Deprez, J. J. of Geometry, 25, 192–200 (1985).

- 4. Синюков Н. С. Геодезические отображения римановых пространств. М., «Наука», 1979, Гл. II, § 3.
- 5.
- Szabó, Z. I. J. Differ. Geometry, 17, 531—582 (1982). Кайгородов В. Р. Итоги науки и техн. ВИНИТИ АН СССР. Пробл. геометрии, 14, 177—204 (1983). Мирзоян В. А. Итоги науки и техн. ВИНИТИ АН СССР. Пробл. геометрии, 6.
- 7. 14, 73-100 (1983).
- 8. Лумисте Ю. Уч. зап. Тартуск. ун-та, вып. 734, 50-62 (1986).
- 9. Лумисте Ю. Г. Изв. ВУЗов. Математика, № 1, 18—27 (1987). 10. Лумисте Ю. Г. Изв. ВУЗов. Математика, № 11, 1—10 (1987).
- 11. Moore, J. D. J. Differ. Geometry, 5, 159-168 (1971).

Tartu State Universitu

Received Feb. 16, 1987