EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * MATEMATIKA PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1986, 35, 4

УЛК 62-501.7

И. РАНДВЕЭ

АЛГОРИТМ ВЫБОРА ПРЕДСТАВЛЕНИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ЛИДЕРА

I. RANDVEE. ALGORITM OPTIMAALSE JUHTTOIME ESITUSVIISI VALIKUKS
I. RANDVEE. AN INCENTIVE SCHEME FOR LINEAR QUADRATIC SYSTEMS

(Представил Н. Алумяэ)

Известно [1,2], что при управлении динамическими системами, состоящими из нескольких (независимых) центров, приоритетный центр (лидер) может установить в системе режим, который соответствует глобальному минимуму своей функции цели. Ниже приводится алгоритм выбора представления закона управления, с помощью которого лидер может воздействовать на функцию цели последующего центра и реализовать в линейной дискретно-непрерывной системе желаемую ему допустимую траекторию движения.

1. Формальное описание задачи Дана динамическая система

$$\dot{x} = f(x, u_1, u_2, t), \quad x \in \mathbb{R}^n, \quad u_i \in \mathbb{R}^{r_i}, \tag{1}$$

которая управляется из двух центров. Приоритетный центр использует управление u_1 . Предполагается, что при любой паре допустимых законов управления $u_i = p_i(x(s), t_0 \leqslant s \leqslant t), \ p_i \in \Gamma_i$, т. е. для $(p_1, p_2) \in \Gamma_i \times \Gamma_2$ при заданном x_0 существует единственное решение уравнения (1) и конечное значение критерия оптимальности неприоритетного центра $J_2(x_0, p_1, p_2)$. Пусть лидер выбрал желаемое ему решение уравнения (1) — траекторию $\overline{x}(t)$ и соответствующие этому решению законы управления (p_1^0, p_2^0) .

Дефинируем множество эквивалентных относительно траектории

 $\bar{x}(t)$ представлений закона p_1^0 :

$$\overline{\Gamma}_1 \stackrel{\triangle}{=} \{ p_1 \in \Gamma_1 | p_1(\overline{x}, t) = p_1^0(\overline{x}, t), \ t_0 \leqslant t \leqslant t_f \}.$$

Задача теперь состоит в выборе такого ${p_1}^* \!\! \in \!\! \Gamma_1$, при котором имеет место равенство

$$p_2^*(\widetilde{x}) = p_2^0(\overline{x}), \tag{2}$$

где $p_2^* = \underset{\Gamma_2}{\operatorname{arg \, min}} J_2(p_1^*, p_2),$

а $\widetilde{x}(t)$ — соответствующее паре $({p_1}^*,~{p_2}^*)$ решение уравнения (1). При $\widetilde{x}(t_0) = \overline{x}(t_0)$ и выполнении условия (2), очевидно, траектории $\widetilde{x}(t)$ и $\overline{x}(t)$ идентичны.

2. Алгоритм для дискретно-непрерывных систем

Будем считать, что желаемая для лидера траектория \bar{x}_k $(k=0,\ 1,\ \ldots N-1)$ системы

 $x_{k+1} = Ax_k + B_1 u_k + B_2 v_k \tag{3}$

достигается при линейных законах управления: $u_k{}^0 = -K_h \overline{x}_h$ и $v_k{}^0 = -L_h \overline{x}_h$, где $\overline{x}_h \in R^n$, $u_h \in R^{r_1}$, $v_h \in R^{r_2}$, A, B_1 , B_2 , K_h , L_h — известные матрицы.

Определим множество эквивалентных управлений лидера, используя

одношаговый прогноз

$$\Gamma_{1,h} = \{p_{1,h}(x_h, x_{h-1}) = -K_h x_h + P_h(x_h - A_h x_{h-1})\},$$
 где $A_h = A - B_1 K_{h-1} - B_2 L_{h-1}$, а $P_h \in R^{n \times r_1}$ неизвестная матрица.

Требуется определить последовательность P_h^* , $k=0, 1, \ldots N-1$, при которой минимум функции цели неприоритетного центра

$$J_2 = x'_N Q_{2N} x_N + \sum_{k=0}^{N-1} (x'_k Q_2 x_k + p'_{1,k} R_{21} p_{1,k} + v'_k R_{22} v_k)$$
(4)

по управлениям v_h достигается при v_h^* равном v_h^0 , т. е. $v_h^* = -L_h \bar{x}_h$ для всех h.

Минимизация (4) должна осуществляться при условии (3), в котором u_k заменен, как и в (4), на $p_{1,k}(x_k, x_{k-1}) \in \overline{\Gamma}_{1,k}$; предполагается также, что $Q_{2N} \geqslant 0$, $Q_2 \geqslant 0$, $R_{21} > 0$, $R_{22} > 0$ — известные симметричные матрицы.

В данном случае вторая вариация J_2 включает P_h , т. е. у лидера в действительности имеется возможность изменять J_2 , не изменяя при

этом u_k^0 — желаемых значений своего сигнала управления.

Задача (3)—(4) решается по схеме синтеза линейных регуляторов с учетом воздействий предшествующей системы [3]. Приоритет лидера при этом обеспечивается исключением управления v_k на последнем шаге, т. е. выбором $B_2(N) = 0$ или $R_{22}(N) = 0$.

Искомое P_h^* определяется на каждом шаге $N, N-1, \ldots, 0$ решени-

ем линейного матричного уравнения

$$B'_{2}(P'_{h}G_{h}+S_{h})A_{h-1}-R_{22}L_{h-1}=0$$
(5)

совместно с рекурсивными уравнениями для матриц S_k и G_k :

$$S_{h} = Q_{2} + A'_{h}S_{h+1}A_{h} + K'_{h}R_{21}K_{h} + L'_{h}R_{22}L_{h}, \quad S_{N} = Q_{2N},$$

$$G_{h} = B'_{1}P_{h+1}G_{h+1}A_{h} - R_{21}K_{h} + B'_{1}S_{h+1}A_{h}, \quad G_{N} = 0.$$

Уравнение (5) является необходимым условием минимума функции цели неприоритетного центра на k-м шаге. Его решение P_h^* , если оно существует, обеспечивает равенство v_h^* с желаемым управлением $v_h^0 = -L_h \bar{x}_h$.

Ниже в качестве иллюстрации приведены практически установившиеся значения P_h^* представления закона управления лидера $u_h = -K_h x_h + P_h^* (x_h - A_h x_{h-1})$ для шести различных желаемых траекторий скалярной системы

$$x_{k+1} = 0.9x_k + u_k + v_k, \quad x_0 = 30,$$

в случае функции цели неприоритетного центра

$$J_2 = \sum_{k=0}^{30} x_k^2 + u_k^2 + 3v_k^2.$$

to merons [4])	1	2	3	4	5	6
K ₁₅ L ₁₅ P ₁₅ *	0,2	0,2	0,2	0,2	0,2	0,2
	0,25	0,30	0,35	0,40	0,45	0,50
	0,2	1,0	1,6	2,3	3,2	4,3

Использование эквивалентных представлений закона управления лидера в виде $p_k(x_k, x_{k-1})$ открывает некоторые новые возможности в задачах управления многоуровневыми системами и системами с двумя шкалами времени [4,5].

ЛИТЕРАТУРА

- Ishida, T., Shimemura, E. Int. J. Control, 38, № 6, 1133—1148 (1983).
 Zheng, Y.-P., Basar, T., Cruz, J. B. Jr. IEEE Trans. on Systems, Man, and Cybernetics, SNC-14, № 1 (1984).
 Рандвеэ И. Изв. АН ЭССР. Физ. Матем., 35, № 1, 107—109 (1986).
 Рандвеэ И. Изв. АН ЭССР. Физ. Матем., 30, № 1, 35—46 (1981).
 Salman, M. A., Cruz, J. B. Jr. Int. J. Control, 37, № 6, 1401—1416 (1983).

Институт кибернетики Академии наук Эстонской ССР

Поступила в редакцию 21/II 1986