LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FUUSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1985, 34, 4

https://doi.org/10.3176/phys.math.1985.4.12 yak 519.854.62

Л. КИВИСТИК

новые достаточные условия конечности ДЛЯ ДВОИСТВЕННЫХ АЛГОРИТМОВ ОТСЕЧЕНИЯ

L. KIVISTIK. DUAALSETE LÕIKEALGORITMIDE LÕPLIKKUSE UUED PIISAVAD TINGIMUSED L. KIVISTIK. NEW SUFFICIENT FINITENESS CONDITIONS FOR DUAL CUT ALGORITHMS

(Представил А. Хумал)

Для решения задач целочисленного линейного программирования в нижеследующем сообщении рассматриваются двойственные алгоритмы отсечения, частными случаями которых являются циклический и смешанный алгоритмы Гомори. Для этих алгоритмов приводятся достаточные условия конечности, которые более слабые, чем опубликованные до сих пор условия. Эти условия могут служить теоретическим основанием выбора более сильных отсечений и тем самым ускорения двойственных алгоритмов.

Рассмотрим задачу целочисленного линейного программирования в следующей форме: максимизировать функцию

$$x_0 = a_{00} + \sum_{j \in J} a_{0j} (-x_j) \tag{1}$$

при условиях

$$x_i = a_{i0} + \sum_{j \in J} a_{ij}(-x_j) \ge 0$$
 $(i \in I),$ (2)

$$x_j = -1 (-x_j) \ge 0 \quad (j \in J), \tag{3}$$

$$x_i$$
 — целое при $j \in T = \{0, 1, \dots, n_i\},$ (4)

где I — множество базисных, J — множество небазисных переменных, причем $I \cup J = \{1, 2, ..., n\}$ и $n_1 \leq n$.

Предположим, что симплексная таблица этой задачи находится в *l*-нормальной форме, т. е. $A_j = (a_{0j}, a_{1j}, \dots, a_{nj})^T > 0$ при всех $j \in T$, и что l-нормальность каждой следующей симплексной таблицы сохраняется вследствие подходящего выбора ведущего элемента. При этом вид задачи (1)-(4) можно считать текущим видом (изменяются только коэффициенты a; и множества I, J). Однако в дальнейшем будем пользоваться также обозначениями $a_{ij}^s, A_j^s, I_s, J_s,$ где s — номер итерационного (симплексного) шага.

От задачи (1)-(4) потребуем еще, чтобы она имела по крайней мере одно допустимое решение или же целевая функция (1) была бы ограничена при условиях (2)-(3).

Пусть для решения задачи (1)-(4) применяется следующий алгоритм.

Если недопустимость текущей симплексной таблицы вытекает из отрицательности некоторого свободного члена $a_{i0}{}^s(i \in I_s)$, то ведущей

строкой выбирается любая из таких строк. Если $a_{i0}^s \ge 0$ при всех $i \in I_s$, а некоторый a_{i0}^s дробен, то добавляется правильное отсечение

$$d_{0}^{s} + \sum_{j \in J_{s}} d_{j}^{s} (-x_{j}) \ge 0,$$
(5)

в котором $d_0^s < 0$, и строка его коэффициентов выбирается в качестве ведущей строки. Затем выбирается ведущий элемент по правилам двойственного лексикографического симплекс-метода и проводится симплексный шаг.

Как известно, тогда выполняются лексикографические неравенства

$$A_0^{s+1} \leq A_0^s$$
 (s=0, 1, 2; ...). (6)

Алгоритмами такого типа являются циклический (первый) и смешанный (второй) алгоритмы Гомори [¹⁻³]. Для них доказана конечность при условии, что в качестве генерирующей строки выбирается первая такая строка, где свободный член — дробное число (причем этот выбор можно использовать не на каждой итерации, а по крайней мере через каждые q итераций, где q — любое фиксированное число). Оказывается, что правило выбора генерирующей строки можно ослабить. При формулировке соответствующих условий требуется понятие степени вырожденности вектора, введенное в [⁴]: будем говорить, что вектор $A_j = (a_{0j}, a_{1j}, \ldots, a_{nj})^T$ имеет степень вырожденности d, если $a_{0j} = \ldots = a_{d-1,j} = 0$ u $a_{dj} \neq 0$.

Теорема. Если каждое введенное отсечение (5) определяет ведущий столбец A_l^s, степень вырожденности которого не больше

$$r = \min\{i \in T \mid \{a_{i0}^{s}\} > 0\},\tag{7}$$

а в тех случаях, когда степень вырожденности равна r, выполняется неравенство

$$\frac{d_0^s}{d_l^s} \ge \frac{\{a_{r0}^s\}}{a_{rl}^s}, \tag{8}$$

то описанный алгоритм отсечения конечен.

Доказательство. Используем идею доказательства конечности циклического алгоритма Гомори [1]. Покажем, что через конечное число итераций или A_0^s превращается в постоянный вектор с неотрицательными координатами a_{i0}^s (i=1, 2, ..., n), причем координаты этого вектора целые при $i \in T$, или у задачи (1)—(4) отсутствуют допустимые решения (что также выясняется через конечное число итераций).

В силу неравенств (6) и предпюложений относительно задачи, выполняются неравенства

$$a_{00}^{0} \geqslant a_{00}^{1} \geqslant \ldots \geqslant M, \tag{9}$$

где *М* — или нижняя граница целевой функции, или значение целевой функции при некотором допустимом решении.

Вначале покажем, что через конечное число итераций a_{00}^{s} превращается в целое, которое на следующих итерациях (если такие нужно совершить) уже не изменяется. Если a_{00}^{s} — дробное число, то $a_{0l}^{s} > 0$ и $d_{0}^{s}/d_{l}^{s} \ge \{a_{00}^{s}\}/a_{0l}^{s}$. Следовательно,

$$a_{00}^{s+1} = a_{00}^s = \frac{d_0^s}{d_1^s} a_{0l}^s \leqslant a_{00}^s - \frac{\{a_{00}^s\}}{a_{0l}^s} a_{0l}^s = [a_{00}^s],$$

т. е. вследствие симплексной итерации *а*₀₀⁸ уменьшается по крайней мере до ближайшего меньшего от него целого числа. В силу (9), начиная с некоторого значения индекса $s = s_0$, величина a_{00}^s должна оставаться целой постоянной, т. е. $a_{00}^{s+1} = a_{00}^s$, если $s \ge s_0$. Допустим, что алгоритм, однако, бесконечен и рассмотрим итерации с номерами $s > s_0$. В силу неравенств (6) $a_{10}^{s+1} \leqslant a_{10}^s$. Покажем, что a_{10}^s тоже не может оставаться дробным числом. Если бы было $\{a_{10}^s\} > 0$, то r=1 $(a_{00}^s - a_{10}^s) = 0$ целое), $a_{0l}^{s} = 0$ (так как $a_{00}^{s+1} = a_{00}^{s}$) и степень вырожденности ведущего столбца A_{l^8} не меньше, чем 1. По условиям теоремы степень столбца A_{l^s} точно равна 1, $a_{1l^s} > 0$ и $d_{0^s}/d_{l^s} \ge \{a_{10^s}\}/a_{1l^s}$. Поэтому

$$a_{10}^{s+1} = a_{10}^s - \frac{d_0^s}{d_1^s} a_{1l}^s \leqslant a_{10}^s - \{a_{10}^s\} = [a_{10}^s],$$

следовательно, a₁₀^s уменьшается вследствие симплексной итерации также по крайней мере до ближайшего, меньшего от него целого числа. Поэтому *а*₁₀^s или остается постоянным неотрицательным целым числом, начиная с некоторого индекса $s = s_1 \ge s_0$, или через конечное число итераций превращается в отрицательное. В последнем случае через конечное число t=t(s)≥1 итераций симплексная таблица преобразуется в допустимую форму, причем $A_0^{s+t} \lt A_0^s$. Так как $a_{10}^{s+t} \ge 0 > a_{10}^s$, то должно быть $a_{00}^{s+t} < a_{00}^{s}$, что противоречит равенству $a_{00}^{s+t} = a_{00}^{s}$ при $s \ge s_0$. Поэтому остается единственная возможность: $a_{10}^{s+1} = a_{10}^{s} \ge 0$ при $s \ge s_1$, причем a_{10}^{s} — целое число. Тем же самым путем получается, что начиная с некоторого индекса $s = s_2 \ge s_1$ остается постоянным неотрицательным целым числом a_{20}^s и т. д., наконец, начиная с индекса $s = s_n \ge s_n, -1$ остается постоянным неотрицательным целым $a_{n,0}$ ^s. Теперь можно аналогично доказать, что через конечное число итераций $a^{s}_{n_{t}+1,0}, \ldots, a_{n0}^{s}$ преобразуются в неотрицательные. Теорема доказана. Примечание. Доказательство остается в силе, если не каждое от-

сечение (5) удовлетворяет условиям теоремы, а им удовлетворяет по крайней мере каждое q-ое отсечение, где q — любое фиксированное положительное целое число.

Легко проверить, что для циклического и смешанного алгоритмов условия теоремы всегда выполняются, если отсечения построить стандартным образом по первой строке, имеющей нецелочисленный свободный член. Но ясно, что и другие выборы генерирующей строки и другие правила построения отсечений могут давать отсечение, удовлетворяющее условиям теоремы. При этом, чем больше частное в левой части неравенства (8), тем вероятнее, что это неравенство удовлетворяется.

Доказанная теорема может быть теоретическим основанием при выборе и использовании более сильных отсечений с целью ускорения упомянутых алгоритмов.

ЛИТЕРАТУРА

- Gomory, R. E. In: Recent Advances in Mathematical Programming. New York, San Francisco, Toronto, London. McGraw-Hill Book Co., Inc., 1963, 269—302.
 Корбут А. А., Финкельштейн Ю. Ю. Дискретное программирование. М., «Наука»,
- 1969.
 Ху Т. Целочисленное программирование и потоки в сетях. М., «Мир», 1974.
 Кивистик Л. Изв. АН ЭССР. Физ. Матем., 33, № 2, 197—200 (1984).

Тартуский государственный университет

Поступила в редакцию 3/XII 1984