https://doi.org/10.3176/phys.math.1985.4.06

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1985, 34, 4

Т. ЭРД

ВЛИЯНИЕ СИЛЬНОГО СПИНОВОГО РАСЩЕПЛЕНИЯ НА СЕГНЕТОЭЛЕКТРИЧЕСКИЕ ФАЗОВЫЕ ПЕРЕХОДЫ В УЗКОЗОННЫХ ПОЛУПРОВОДНИКАХ

(Представил В. Хижняков)

На основе вибронной теории структурных фазовых переходов (см., напр., [1, 2]) исследовано влияние сильного спинового расщепления электронных зон $2\delta \sim \Delta$ (δ — величина спинового расщепления, Δ — ширина затравочной запрещенной зоны) на свойства сегнетоэлектрика-полупроводника с узкими разрешенными зонами.

Рассмотренные ниже эффекты связаны со значительными изменениями чисел заполнения электронных состояний в магнитном поле. Следовательно, все коэффициенты разложения свободной энергии в ряд по степеням параметра порядка зависят существенно от температуры в отличие от простейшего варианта феноменологической теории.

Для спектров валентной зоны ($\varepsilon_{1,2}$) и зоны проводимости ($\varepsilon_{3,4}$) в магнитном поле с индукцией *В* примем

$$\varepsilon_{1,2}(B) = \varepsilon_v \mp \delta,$$

$$\varepsilon_{3,4}(B) = \varepsilon_c \mp \delta,$$

$$\delta = \frac{1}{2} g \mu_B B,$$
(1)
(2)

УДК 537.226 4

где $\varepsilon_{v,c}$ — отвечают энергиям зон при B=0, $\varepsilon_c-\varepsilon_v=\Delta$, g — спектроскопический фактор, μ_B — магнетон Бора. Используем здесь самую простую модель, пренебрегая дисперсией электронных зон, что в какой-то мере допустимо для узких зон.

Согласно вибронной теории [^{1, 2}], межзонное электрон-фононное взаимодействие индуцирует сегнетоэлектрический фазовый переход в полупроводнике. Следуя [³], перенормированные этим взаимодействием спектры активных электронных зон в магнитном поле с учетом (1) в приближении среднего поля равны

$$E_{1,3}(B, y_0) = \frac{1}{2} [\varepsilon_c + \varepsilon_v - 2\delta \mp \hat{\Delta}(y_0)],$$

$$E_{2,4}(B, y_0) = \frac{1}{2} [\varepsilon_c + \varepsilon_v + 2\delta \mp \hat{\Delta}(y_0)],$$
(3)

где

$$\hat{\Delta}(y_0) = \left[\Delta^2 + \frac{4V^2 y_0^2}{N_0} \right]^{1/2} .$$
(4)

Здесь y_0 — нормальная координата сегнетоэлектрического колебания $\vec{q=0}, \vec{q}$ — волновой вектор активных фононов), V — константа меж-

зонного электрон-фононного взаимодействия, N₀ — число элементарных ячеек кристалла.

Свободная энергия исследуемой электрон-фононной системы равна [3]

$$F(y_0) = N\mu - \frac{1}{2} k_B T N \sum_{l=1}^{4} \ln \left\{ 1 + \exp\left[\frac{\mu - E_l(B, y_0)}{k_B T}\right] \right\} + \frac{1}{2} M \hat{\omega}_0^2(T) y_0^2.$$
(5)

Здесь N — число электронов в активных зонах (при T=0 валентная зона заполнена электронами, а зона проводимости — пустая), μ — химический потенциал, $\hat{\omega}_0(T)$ — перенормированная фононным ангармонизмом и динамической частью электрон-фононного взаимодействия частота сегнетоэлектрического колебания (этому колебанию отвечает приведенная масса M) [^{1, 2, 4}]. Учитывая, что в данном случае $\mu = \frac{1}{2}$ ($\varepsilon_c + \varepsilon_v$), формула (5) преобразуется с помощью (3) к виду

$$F(y_0) = F_0 - \frac{1}{2} k_B T N \ln \left\{ 4 \left[1 + \operatorname{ch} \frac{\hat{\Delta}(y_0) + 2\delta}{2k_B T} \right] \left[1 + \operatorname{ch} \frac{\hat{\Delta}(y_0) - 2\delta}{2k_B T} \right] \right\} + \frac{1}{2} M \hat{\omega}_0^2(T) y_0^2, \qquad (6)$$

$$F_0 = \frac{1}{2} N(\varepsilon_v + \varepsilon_c).$$

Спонтанное когерентное искажение решетки y_{00} определяется из условий $\partial F(y_0)/\partial y_0|_{y_0=y_{\infty}} = 0$, $\partial^2 F(y_0)/\partial y_0^2|_{y_0=y_{\infty}} > 0$. На основе (6) получаем уравнение для нахождения y_{00}

$$\frac{2}{\hat{\tau}(T)} = \frac{\Delta}{\hat{\Delta}(y_{00})} \left[\operatorname{th} \frac{\hat{\Delta}(y_{00}) + 2\delta}{4k_BT} + \operatorname{th} \frac{\hat{\Delta}(y_{00}) - 2\delta}{4k_BT} \right], \tag{7}$$

где

MORE VROHISH

$$\hat{\tau}(T) = \frac{2\overline{V}^2}{\hat{M}_{\omega_a^2}(T)\Delta},$$
(8)

$$\overline{V} = \sqrt{\frac{N}{N_0}} V. \tag{9}$$

Квадрат частоты мягкой моды в параэлектрической фазе Ω_{hs}^2 найдем из разложения свободной энергии (6) в ряд по степеням y_0 около $y_0 = 0$

$$M\Omega_{hs}^{2}(T,B) = \frac{\partial^{2}F(y_{0})}{\partial y_{0}^{2}}\Big|_{y_{0}=0} =$$
$$= M\hat{\omega}_{0}^{2}(T) - \frac{\overline{V}^{2}}{\Delta} \Big[\operatorname{th} \frac{\Delta + 2\delta}{4k_{B}T} + \operatorname{th} \frac{\Delta - 2\delta}{4k_{B}T} \Big]. \tag{10}$$

Температура Кюри—Вейсса в магнитном поле $T_{c}(B)$ определяется из уравнения $\Omega_{hs}(T_{c}(B), B) = 0$. В случае, когда в системе происходит

Рис. 1.

Рис. 2.

Рис. 1. Зависимость T_c от индукции магнитного поля при различных значениях т для $1 < \tau \leq 2$ ($\Delta = 0,002$ эВ, g = 4). $1 - \tau = 1,25$, $2 - \tau = 1,5$, $3 - \tau = 1,75$, $4 - \tau = 2$. Рис. 2. Зависимость квадрата частоты мягкой моды от температуры при различных значениях индукции магнитного поля для $1 < \tau < 2$ ($\tau = 1,5$, $\Delta = 0,002$ эВ, g = 4). 1 - B = 0, 2 - B = 60 кГс, 3 - B = 70 кГс, 4 - B = 80 кГс, $5 - B = B_{\Delta}$, 6 - B = 100 кГс, 7 - B = 120 кГс.

сегнетоэлектрический фазовый переход второго рода, T_c является температурой фазового перехода *.

При T = 0 квадрат частоты мягкой моды (10) равен

$$M\Omega_{hs}^{2}(0,B) = \hat{M}\omega_{0}^{2}(0) \left[1 - \frac{\hat{\tau}(0)}{2} \left(1 + \vartheta \left(\Delta - 2\delta \right) \right) \right], \tag{11}$$

где

$$\vartheta(x) = \begin{cases} +1, \ x > 0, \\ -1, \ x < 0. \end{cases}$$
(12)

Из (11), (12) видно, что $\Omega_{hs}^2(0, B) < 0$, если $B < B_{\Delta}$ и $\tau(0) > 1$, где

$$B_{\Delta} = \Delta/g\mu_B. \tag{13}$$

При $B > B_{\Delta}$ квадрат частоты мягкой моды $\Omega_{hs^2}(0, B) = \omega_0^2(0) > 0.$

Рассмотрим зависимость точки Кюри—Вейсса от магнитного поля в пределе $|\Delta - 2\delta| \rightarrow 0$. В дальнейшем для простоты полагаем $\hat{\omega_0} \equiv \omega_0$. Тогда $\hat{\tau}(T) \equiv \tau$, где

$$\tau = 2\overline{V}^2 / M \omega_0^2 \Delta, \tag{14}$$

а ω_0 — затравочная частота сегнетоэлектрического колебания. При $\Delta + 2\delta \gg 4k_BT_C(B)$ ($|\Delta - 2\delta| \sim 4k_BT_C(B)$) из (10) получаем

$$k_B T_C(B) \approx \frac{\Delta - 2\delta}{2 \ln \left[(\tau - 1)^{-1} \right]}, \qquad (15)$$

где $\tau \neq 2$. Таким образом, в случае $1 < \tau < 2$, $T_c(B) \rightarrow 0$ при $B \rightarrow B_{\Delta}$. Если $B \geqslant B_{\Delta}$, то $T_c(B) \leqslant 0$. Рассчитанные на основе (10) зависимости T_c от магнитного поля при различных значениях τ ($1 < \tau \leqslant 2$) приведены на рис. 1. Видно, что $T_c(B)$ приближается к нулю по линейному закону (см. (15)). На рис. 2 приведены для $1 < \tau < 2$ зависимости [Ω_{hs}/ω_0]² от

^{*} Спиновое расщепление с равными *g*-факторами валентной зоны и зоны проводимости понижает точку сегнетоэлектрического фазового перехода второго рода [³].

Рис. 4.

Рис. 3. Зависимость квадрата спонтанного искажения решетки от температуры при различных значениях индукции магнитного поля для $1 < \tau < 2$ ($\tau = 1,5$, $\Delta = 0,002$ эВ, g=4). 1 — B=80 кГс, 2 — B=90 кГс. Пунктирные линии — зависимость квадрата координаты y_0^2 , при котором свободная энергия системы имеет максимум, от T. Рис. 4. Зависимость квадрата спонтанного искажения решетки от температуры при различных значениях индукции магнитного поля для 1 < т < 2 (т=1,5, Δ=0,002 эВ, g=4). 1 - B=0, 2 - B=30 KFc, 3 - B=60 KFc.

T, вычисленные из (10), при различных значениях магнитного поля B. Если $B < B_{\Delta}$ (см. кривые 1—4), то при $T > T_{C}(B)$ свободная энергия (6) имеет минимум при $y_0 = 0$, а при $T < T_C(B)$ — максимум. Если $B \ge B_{\Delta}$ (см. кривые 5—7), то свободная энергия $F(y_0)$ имеет при всех температурах минимум, отвечающий у0=0.

Минимум свободной энергии F (y0=0) в магнитном поле B>Bcr (B_{Cr} < B_Δ для 1 < τ < 2) не единственный — появляется дополнительный минимум при $y_0^2 = y_{00}^2 > 0$, когда $T < T_0(B)$. Это означает, что для магнитного поля В>Вст в системе происходит сегнетоэлектрический фазовый переход первого рода с температурой Кюри $T_0(B) > T_C(B)$. Критическое поле определяется условием

$$T_{C}(B_{cr}) = T_{0}(B_{cr}).$$
(16)

На рис. З изображены зависимости $y_{00}^2(B)$ от *T*, рассчитанные по уравнению (7), в магнитных полях $B_{\Delta} > B > B_{Cr}$ (кривая 1) и $B > B_{\Delta}$ (кривая 2). Пунктирная линия изображает температурную зависимость значения координаты, при которой свободная энергия (6) проходит через максимум, обращающегося в ноль в точке $T_{c}(B)$. В точке $T_{0}(B)$ происходит переход первого рода из сегнетофазы в парафазу. Переход первого рода из парафазы в сегнетофазу в случае $B_{\Lambda} > B > B_{Cr}$ имеет место в точке $T_{C}(B)$, а в случае $B > B_{\Delta}$ не наблюдается. При $B < B_{Cr}$ в системе происходит сегнетоэлектрический фазовый переход второго рода. Зависимости квадрата спонтанного искажения решетки y₀₀²(B) от T для *B* < *B*_{*Cr*} приведены на рис. 4.

Температура сегнетоэлектрического фазового перехода первого рода $T_0(B)$ понижается с ростом B (см. рис. 3) и превращается в ноль при неком B_0 . Условие $B < B_0$ при T = 0 эквивалентно требованию

 $2\delta < \Delta(y_{00}(B, T=0))$. Согласно (7) в этом случае имеем

$$y_{00}^{2}(B,T=0) = \frac{\Delta^{2}N_{0}(\tau^{2}-1)}{4V^{2}} \equiv y_{00}^{2}(T=0), \qquad (17)$$

т. е. y_{00}^2 не зависит от *B*, отвечая обычному [1] значению $y_{00}^2(B=0,$ T=0). Таким образом, с учетом (17) и (4) условие существования

сегнетоэлектрического фазового перехода в магнитном поле $B < B_0$ при $\tau > 1$ имеет вид

$$2\delta < \tau \Delta$$
 (18)

и, следовательно,

$$B_0 = \tau \Delta / g \mu_B = \tau B_\Delta. \tag{19}$$

Адиабатический потенциал системы по (6) равен

$$F(y_0, T=0) = \begin{cases} F_0 - N\delta + \frac{1}{2} M\omega_0^2 y_0^2, & y_0^2 < y_{01}^2, \\ F_0 - \frac{1}{2} N\hat{\Delta}(y_0) + \frac{1}{2} M\omega_0^2 y_0^2, & y_0^2 > y_{01}^2, \end{cases}$$
(20)

где

$$y_{01}^{2} = \begin{cases} \frac{(2\delta)^{2} - \Delta^{2}}{4V^{2}} N_{0}, & B > B_{\Delta}, \\ 0, & B < B_{\Delta}. \end{cases}$$
(21)

При $B < B_{\Delta}$ свободная энергия $F(y_0, T=0)$ совпадает с адиабатическим потенциалом для B=0. В полях $B_{\Delta} < B < B_0$ решение уравнения (7) $y_{00}^2(T=0)$, определяемое (17), отвечает минимуму свободной энергии, так как $y_{00}^2(T=0) > y_{01}^2$. При $B > B_0$ из (20) и (21) вытекает, что адиабатический потенциал имеет единственный минимум при $y_0=0$, т. е. при $B > B_0$ сегнетоэлектрический фазовый переход исчезает и система обладает только параэлектрической фазой.

Рис. 5. Фазовая диаграмма в плоскости T-В для 1<τ<2.

На рис. 5 приведена фазовая диаграмма системы во внешнем магнитном поле в плоскости T-B для случая $1 < \tau < 2$. Область I отвечает параэлектрической фазе, область II — сегнетоэлектрической фазе, описываемой свободной энергией, имеющей при $y_0=0$ максимум. В областях III и IV сегнетоэлектрической фазе отвечает свободная энергия, обладающая при $y_0=0$ минимумом. При этом в области III $F(0) > F(y_{00})$, а в IV $F(0) < F(y_{00})$, т. е. в области IV сегнетоэлектрическая фаза является метастабильной. Переходам из областей II в I и IV в I при B== const отвечают соответственно фазовые переходы второго и первого рода.

Рис. 6. Зависимость $T_{\rm C}$ от индукции магнитного поля при различных значениях т для $\tau > 2$ ($\Delta = 0,002$ эВ, g = 4). $1 - \tau = 2,5, 2 - \tau = 3, 3 - \tau = 3,5$.

Рассмотрим теперь случай т>2. На основе (10) имеем

$$k_B T_{C1}(B = B_{\Delta}) = \frac{\Delta}{2} \left[\operatorname{arcth} \frac{\tau}{2} \right]^{-1}.$$
 (22)

Численный анализ температурного поведения квадрата частоты мягкой моды (10) показывает, что точка Кюри—Вейсса $T_{c1}(B)$ понижается с ростом магнитного поля, а при $B > B_{\Delta}$ появляется вторая точка Кюри— Вейсса $T_{c2}(B)$, которая повышается с ростом B (функция $T_c(B)$ при этом двузначна, см., рис. 6). При $B \leq B_{\Delta} T_{c2}(B) \leq 0$. В случае малых T_{c2} нижняя точка Кюри—Вейсса определяется формулой (15), которую можно переписать в виде

$$k_B T_{C2}(B) \approx \frac{2\delta - \Delta}{2\ln(\tau - 1)} \,. \tag{23}$$

При *B*>*B_m*, определяемым условием

$$T_{C1}(B_m) = T_{C2}(B_m), \tag{24}$$

система не обладает точкой Кюри—Вейсса. На рис. 7 приведены зависимости квадрата частоты мягкой моды Ω_{hs}^2 от температуры, рассчитанные по (10) для $\tau > 2$ при различных значениях B: кривые 1, 2 при $B < B_{\Delta}$, 3 — при $B_{\Delta} < B < B_m$, а 4 — при $B > B_m$. Таким образом, если $B < B_{\Delta}$, то при $T > T_c(B)$ свободная энергия (6) имеет минимум, а при

Рнс. 7. Зависимость квадрата частоты мягкой моды от температуры при различных значениях индукции магнитного поля для $\tau > 2$ ($\tau = 3$, $\Delta = 0,002$ эВ, g = 4). I = B = 0, 2 = B = 80 кГс, 3 = B = 110 кГс, 4 = B = 140 кГс.

4 ENSV TA Toimetised. F * M 4 1985

Рис. 8. Зависимость квадрата спонтанного искажения решетки от температуры при различных значениях индукции магнитного поля для $\tau > 2$ ($\tau = 3,5$, $\Delta = 0,002$ эВ, g = 4). I - B = 135 кГс, 2 - B = 145 кГс, 3 - B = 200 кГс. Пунктирные линии — зависи-мость квадрата координаты y_0^2 , при котором свободная энергия системы имеет максимум, от T.

 $T < T_{C}(B)$ — максимум в точке $y_0 = 0$. Если $B_m > B > B_{\Delta}$, то при $T > T_{C_1}(B)$ и $T < T_{C_2}(B)$ свободная энергия $F(y_0)$ имеет минимум, а при $T_{C_2}(B) < T < T_{C_1}(B)$ — максимум в точке $y_0 = 0$. Если $B > B_m$, то $F(y_0)$ обладает всегда минимумом при $y_0 = 0$.

Численный анализ уравнения (7) показывает, что в магнитных полях $B_0 > B > B_{cr} = B_m$ система испытывает сегнетоэлектрический фазовый переход первого рода с температурой превращения $T_0(B)$. В отличие от случая $1 < \tau < 2$, при $\tau > 2$ величина критического магнитного поля $B_{cr} > B_{\Delta}$.

На рис. 8 приведены зависимости $y_{00}^2(B)$ от температуры для $\tau > 2$, вычисленные на основе уравнения (7) при $B_{cr} > B > B_{\Delta}$ (кривая 1) и при $B_0 > B > B_{cr}$ (кривые 2, 3). В последнем случае (кривые 2, 3) в системе имеет место переход первого рода из сегнетофазы в парафазу при температуре $T_0(B)$, а обратный переход не наблюдается. Зависимости $y_{00}^2(B)$ от T для $\tau > 2$ при $B < B_{\Delta}$ имеют качественно аналогичный характер с зависимостями, приведенными на рис. 4. Из рис. 8 видно, что температура сегнетоэлектрического фазового перехода первого рода T_0 понижается с ростом B. При $B \ge B_0$ (B_0 определяется формулой (19)) температура перехода $T_0(B) \le 0$ и в системе существует только параэлектрическая фаза.

Рис. 9. Фазовая диаграмма в плоскости Т-В для т>2.

На рис. 9 изображена фазовая диаграмма системы в плоскости Т-В для $\tau > 2$ (обозначения такие же, как на рис. 5).

Таким образом, показано, что в сегнетоэлектриках-полупроводниках с узкими разрешенными зонами спиновое расщепление 28~ Д обусловливает превращение фазового перехода второго рода в переход первого рода при B₀>B>B_{cr}. Если B>B₀, то в системе отсутствует низкосимметричная фаза. Перед исчезновением фазового перехода сегнетоэлектрическая фаза метастабильна. Стабильность парафазы при В>Во обеспечивается перераспределением электронов между активными зонами. В достаточно сильном магнитном поле может реализоваться ситуация, где система переходит из сегнетофазы в парафазу, тогда как обратный переход не наблюдается.

В заключение подчеркнем, что результаты данной работы относятся в первую очередь к полупроводникам с узкими электронными зонами. В случае широких разрешенных зон возможны существенные различия. Однако сложность решаемой проблемы оправдывает использование простейшей модели электрон-фононной системы.

Автор признателен П. Консину и Н. Кристофелю за обсуждение результатов работы и ценные замечания.

ЛИТЕРАТУРА

Kristoffel, N., Konsin, P. Ferroelectrics, 6, 3—12 (1973).
 Konsin, P. Phys. status solidi (b), 76, № 2, 487—496 (1976); 86, № 1, 57—66 (1978).
 Konsin, P., Ord, T. Phys. status solidi (b), 97, № 2, 609—615 (1980).
 Гириберг Я. Г., Тамарченко В. И. Физ. твердого тела, 18, вып. 4, 1066—1072 (1976); 18, вып. 11, 3340—3347 (1976).

Институт физики Академии наук Эстонской ССР Поступила в редакцию 26/X 1984

T. ÖRD

TUGEVA SPINNLÕHENEMISE MÕJU SENJETTELEKTRILISTELE FAASISIIRETELE **KITSATSOONILISTES POOLJUHTIDES**

Töös on uuritud tugeva spinnlõhenemise mõju senjettelektrilistele faasisiiretele kitsaste lubatud tsoonidega pooljuhtides struktuursete faasisiirete vibroonse teooria alusel. On näidatud, et spinnlõhenemine $2\delta \sim \Delta$ (δ — spinnlõhenemise suurus, Δ — keelutsooni laius) põhjustab teist liiki faasisiirde muutumise esimest liiki faasisiirdeks magnetväljades $B_0 > B > B_{cr}$. Kui $B > B_0$, siis süsteemis puudub madalasümmeetriline faas. Enne faasisiirde kadumist on senjettelektriline faas metastabiilne. Parafaasi stabiilsus $B > B_0$ korral tagatakse elektronide ümberjaotumisega aktiivsete tsoonide vahel. Piisavalt tugevas magnetväljas võib realiseeruda situatsioon, kus süsteem läheb senjettelektrilisest faasist paraelektrilisse, vastupidine üleminek aga ei toimu.

T. ÖRD

INFLUENCE OF STRONG SPIN SPLITTING ON FERROELECTRIC PHASE TRANSITIONS IN NARROW-BAND SEMICONDUCTORS

The influence of strong spin splitting on ferroelectric phase transitions in semicon-ductors with narrow allowed bands is considered on the basis of the vibronic theory of structural phase transitions. It is shown that the spin splitting $2\delta \sim \Delta$ (δ is the quan-tity of the spin splitting, Δ is the width of the forbidden band) causes the change of the second order phase transition into the first order one in the magnetic fields $B_0 > B > B_{cr}$. There is no low symmetric phase in the system if $B > B_0$. The ferroelectric phase is metastabile before the vanishing of the phase transition. The stability of the paraphase on $B > B_0$ is guaranteed by the redistribution of electrons between the active bands. In a sufficiently strong magnetic field a situation can be realized where the system turns from the ferroelectric to paraelectric phase, while no opposite transition takes place. place.