https://doi.org/10.3176/phys.math.1985.4.02

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1985, 34, 4

УДК 517.5

А. КИВИНУКК

ОБ ОЦЕНКЕ КОНСТАНТ ЛЕБЕГА

(Представил А. Хумал)

1. Рассмотрим треугольный метод суммирования ряда Фурье непрерывной функции $f \Subset C_{2\pi}$

$$U_n(f,x) = \frac{a_0}{2} + \sum_{k=1}^n \varphi\left(\frac{k}{n+1}\right) \left(a_k \cos kx + b_k \sin kx\right),$$

определяемый сумматорной функцией $\varphi \in C_{[0,1]}$, $\varphi(0) = 1$, $\varphi(t) = 0$ $(t \ge 1)$. Известно [1], что константы Лебега метода U_n являются операторной нормой $||U_n||$ оператора U_n в пространстве непрерывных $C_{2\pi}$ или суммируемых функций, причем

$$||U_n|| = \frac{2}{\pi} \int_0^n \left| \frac{1}{2} + \sum_{k=1}^n \varphi\left(\frac{k}{n+1}\right) \cos kx \right| dx.$$

О константах Лебега написано много работ. Мы не будем освещать историю этого вопроса, сошлемся только на обзорную статью Р. М. Тригуба [²]. Настоящая работа отличается от предыдущих тем, что здесь особое внимание уделено нахождению численных оценок констант Лебега. Полученные результаты лучше, чем в книгах В. В. Жука, Г. И. Натансона [^{3, 4}], в которых приведены более поздние результаты. Приводимая нами основная оценка констант Лебега применяется в теоремах сравнения разных методов суммирования.

2. Вычисление констант Лебега облегчает формула ([4], с. 167-169)

$$\sup_{n} \|U_{n}\| = \frac{2}{\pi} \int_{0}^{\infty} \left| \int_{0}^{1} \varphi(t) \cos xt \, dt \right| dx.$$
(1)

Для функции

$$\Phi(x) = \int_{0}^{1} \varphi(t) \cos xt \, dt$$

справедлива

Лемма 1. Пусть $\varphi(0) = 1$, $\varphi(1) = 0$, φ — монотонна, дифференцируема, кусочно-выпукла на [0, 1] (т. е., существует разбиение $0 = t_1 < t_2 < \ldots$ $\ldots < t_{m+1} = 1$ такое, что на каждом интервале (t_k, t_{k+1}) функция φ выпукла вверх или вниз). Тогда Ф имеет свойства:

 $1^{\circ} \Phi(x) \ge 0 \qquad npu \quad 0 \le x \le \pi,$ $2^{\circ} \Phi(x) \le 1/x \qquad npu \quad x > 0,$ $3^{\circ} \Phi(x) \le 2\pi/x^2 \quad npu \quad x > 0,$ где для выпуклой вверх φ на (t_1, t_2)

$$\tau = -\sum_{k=1}^{m/2} \varphi'(t_{2k}), \qquad m - \text{четное},$$

$$\tau = -\sum_{k=1}^{(m+1)/2} \varphi'(t_{2k}), \qquad m - \text{нечетное}$$

а для выпуклой вниз ф на (t₁, t₂)

unare i reve

TONE OF THE PARTY

and the second second

$$\tau = -\sum_{k=1}^{m/2+1} \varphi'(t_{2k-1}), \qquad m - \text{четное},$$

$$\tau = -\sum_{k=1}^{(m+1)/2} \varphi'(t_{2k-1}), \qquad m - \text{нечетное}.$$

Доказательство. Интегрируя по частям, имеем

$$\Phi(x) = -\frac{1}{x} \int_{0}^{1} \varphi'(t) \sin xt \, dt.$$
(2)

OPROPER MITONIO

Поскольку — $\varphi' \ge 0$, то свойства 1°—2° очевидны. Свойство 3° докажем, например, для выпуклой вниз φ на (t_1, t_2) и для нечетного m. Так как φ дифференцируема, то в точках t_h вид выпуклости изменяется. Следовательно, — φ' на (t_1, t_2) не возрастает, на (t_2, t_3) не убывает и т. д. Учитывая это, интеграл (2) разобьем по схеме

$$\int_{0}^{1} = \sum_{k=1}^{(m-1)/2} \left(\int_{t_{2k-1}}^{t_{2k}} + \int_{t_{2k}}^{t_{2k+1}} \right) + \int_{t_{m}}^{t_{m+1}}$$

и в каждом интеграле применим вторую теорему о среднем значении. Получим

$$\int_{0}^{1} \varphi'(t) \sin xt \, dt = \sum_{k=1}^{(m-1)/2} \left\{ \varphi'(t_{2k-1}) \int_{t_{2k-1}}^{\xi_{k}} \sin xt \, dt + \varphi'(t_{2k+1}) \int_{\eta_{k}}^{t_{2k-1}} \sin xt \, dt \right\} + \\ + \varphi'(t_{m}) \int_{t_{m}}^{\xi} \sin xt \, dt = \varphi'(t_{1}) \int_{t_{1}}^{\xi_{1}} \sin xt \, dt + \sum_{k=2}^{(m-1)/2} \varphi'(t_{2k-1}) \int_{\eta_{k-1}}^{\xi_{k}} \sin xt \, dt + \\ + \varphi'(t_{m}) \int_{\eta_{m-1}/2}^{\xi} \sin xt \, dt,$$

где $t_{2h-1} \leqslant \xi_h \leqslant t_{2h} \leqslant \eta_h \leqslant t_{2h+1}$ $(k=1, 2, \ldots, (m-1)/2), t_m \leqslant \xi \leqslant t_{m+1}$. Отсюда имеем

$$\left| \int_{0}^{1} \varphi'(t) \sin xt \, dt \right| \leq -\frac{2}{x} \sum_{k=1}^{(m+1)/2} \varphi'(t_{2k-1}).$$

Теперь 3° следует из (2).

nation and a second of the

Для краткости дальнейших обозначений введем функцию l,

$$l(x) = \frac{2}{\pi} \begin{cases} \frac{2x}{\pi}, & 0 < x \leq \frac{\pi}{2}, \\ 1 + \ln \frac{2x}{\pi}, & x \geq \frac{\pi}{2}, \end{cases}$$
(3)

2 ENSV TA Toimetised. F * M 4 1985

361

й функционал F от ф,

$$F(\varphi) = \frac{2}{\pi} \int_{0}^{1} \varphi(t) \frac{\sin \pi t}{t} dt.$$
(4)

Отметим, что из неравенств $0 \leq \varphi(t) \leq 1, t \in [0, 1]$ следует

$$F(\varphi) \leqslant \frac{2}{\pi} \operatorname{Si}(\pi) \approx 1,179.$$
 (5)

Из леммы 1 следует основная оценка констант Лебега.

Теорема 1. Если сумматорная функция φ метода суммирования U_n удовлетворяет условиям леммы 1, то

$$\sup \|U_n\| \leq l(\tau) + F(\varphi),$$

еде l, F определяются равенствами (3), (4). Доказательство. Разобьем интеграл (1) по схеме

$$\int_{0}^{\infty} = \int_{0}^{\pi} + \int_{\pi}^{a} + \int_{a}^{\infty},$$

и в каждом интеграле используем соответственно свойствам 1°—3° функции Ф. Имеем

$$\int_{0}^{\infty} |\Phi(x)| dx \leqslant \frac{\pi}{2} F(\varphi) + \ln \frac{a}{\pi} + \frac{2\tau}{a}$$

Последнее выражение имеет минимум при $a=2\tau \ge \pi$. Если $2\tau \le \pi$, то положим $a=\pi$. Теорема доказана.

Следующий пример показывает, что теорема 1 точна по порядку. Пример 1. Типические средние Z_n^r определяются функцией $\varphi_r(t) = = 1 - t^r$ ($r \ge 1$) на [0, 1]. Имеем $\tau = r$ и, с одной стороны,

$$\sup_{n} \|Z_{r_{n}}^{r}\| \leq l(r) + F(\varphi_{r}).$$
(6)

С другой стороны ([¹], с. 491),

$$||U_n|| \ge \frac{4}{\pi^2} \sum_{k=0}^n \frac{\varphi(k/(n+1))}{n-k+1}$$

и если ф непрерывна, то

$$\sup_{n} \|U_{n}\| \ge \frac{4}{\pi^{2}} \int_{0}^{1} \frac{\varphi(t)}{1-t} dt$$

Для Z_n^r получим

$$\sup_{n} \|Z_{n}^{r}\| \ge \frac{4}{\pi^{2}} \ln r,$$

что вместе с (6) доказывает точность оценки по порядку. В менее точном виде оценка (6) содержится в [4], с. 181.

Пример 2. Суммы Ахиезера—Крейна—Фавара X_n^r определяются функцией ([⁴], с. 180)

 $\tilde{\varphi}_{r}(t) = \begin{cases} -\frac{\pi t^{r}}{2(r-1)!} \left(\frac{1}{\sin(\pi t/2)}\right)^{(r-1)} & \text{при четном } r, \\ \frac{\pi t^{r}}{2(r-1)!} \left(\cot\frac{\pi t}{2}\right)^{(r-1)} & \text{при нечетном } r. \end{cases}$

Разлагая $\tilde{\varphi}_r$ в степенной ряд (ср. [³], с. 313—314), можно показать, что $\tilde{\varphi}_r(0) = 1$, $\tilde{\varphi}'_r \leqslant 0$, $\tilde{\varphi}''_r \leqslant 0$ на [0, 1]. Из разложения $\tilde{\varphi}_r$ на простей-

шие дроби (см. [³], с. 147) получаем, что $\tilde{\phi}_r(1) = 0$ и $\tau = -\tilde{\phi}'_r(1) = \pi r K_r/2$, где K_r — константы Фавара. Следовательно,

$$\sup \|X_n^r\| \leq l(\pi r K_r/2) + F(\varphi_r).$$

В книге [³] с. 314 отмечен лишь

$$||X_{r}^{r}|| \leq 2 + 2^{r+1}K_{r}$$
.

Пример 3. Средние Рисса $R_n^{r,p}$ определяются функцией $\varphi_{r,p}(t) = (1-t^r)^p$. Условия леммы 1 выполнены при $r, p \ge 1$, причем $\varphi_{r,p}$ выпукла вверх на $[0, t_0]$ и выпукла вниз на $[t_0, 1]$, где $t_0 = ((r-1)/(pr-1))^{1/r}$. Следовательно,

 $\tau = -\varphi'_{r,p}(t_0) = pr^p \left(\frac{p-1}{pr-1}\right)^{p-1} \left(\frac{r-1}{pr-1}\right)^{1-1/r}$ (здесь 0° означает 1).

3. Рассмотрим применения теоремы 1 к теоремам сравнения разных методов суммирования. Пусть методы суммирования $U_n^{(i)}$ определены сумматорными функциями φ_i (i=1,2). Обозначим константы Лебега метода U_n сумматорной функцией φ через $L(\varphi)$, т. е. $L(\varphi) = ||U_n||$. Несколько изменив «принцип сравнения» Р. М. Тригуба [²], имеем для $f \in C_{2\pi}$

$$\|f - U_n^{(1)}f\| \leq \left\{ 1 + |c|L\left(\frac{1}{c}\left(\frac{1 - \varphi_1}{1 - \varphi_2} - 1\right)\right) \right\} \|f - U_n^{(2)}f\|, \tag{7}$$

где постоянная $c \neq 0$ выбрана так, чтобы функция перехода

$$\Phi_{12} = \frac{1}{c} \left(\frac{1 - \varphi_1}{1 - \varphi_2} - 1 \right) \tag{8}$$

norialization and the pain

удовлетворяла условиям $\Phi_{12}(0) = 1$, $\Phi_{12} \in C_{[0,1]}$. Очевидно, функция обратного перехода Φ_{21} имеет вид

$$\Phi_{21} = \frac{1+c}{c} \left(1 - \frac{1-\varphi_2}{1-\varphi_1} \right)$$

$$\Phi_{21} = \frac{(1+c)\Phi_{12}}{1+c\Phi_{12}}$$

В применениях полезна

 Π емма 2. Пусть $\Phi(0) = 1$, $\Phi(1) = 0$, Φ — монотонна, дифференцируема на [0, 1]. Тогда

$$\Psi = \frac{(1+c)\Phi}{1+c\Phi} \quad (c > -1)$$

имеет такие же свойства на [0, 1]. Кроме того, если Φ выпукла вверх (вниз), то Ψ выпукла вверх при $c \ge 0$ (вниз при $-1 < c \le 0$). Доказательство. Поскольку

$$\Psi' = \frac{(1+c)\Phi'}{(1+c\Phi)^2},$$
(9)

то первая часть утверждения очевидна. Рассмотрим выпуклость. Функция

$$f(x) = \frac{(1+c)x}{1+cx}$$
 (c>-1)

на [0, 1] монотонно возрастает, она выпукла вверх при $c \ge 0$ (вниз при $-1 < c \le 0$). Так как $0 \le \Phi \le 1$ на [0, 1], то вид выпуклости сложной функции $\Psi = f \circ \Phi$ такой же, как у f.

Замечание. Вид выпуклости Ф не сохраняется для всех с>-1, как показывают примеры $\Phi(t) = 1-t^2$, c = -1/2 и $\Phi(t) = (1-t)^2$, c = 4/3. Пример 4. Метод Рогозинского R_n определяется функцией $\varphi_1(t) = -\cos(\pi t/2)$. Другим методом возьмем $Z_n^2(\varphi_2(t) = 1-t^2)$. Функция перехода (8)

$$\Phi_{12}(t) = \frac{1}{c} \left(\frac{1 - \cos(\pi t/2)}{t^2} - 1 \right), \quad c = \frac{\pi^2}{8} - 1$$

удовлетворяет всем условиям леммы 2, в том числе она выпукла вверх. Для проверки выпуклости можно найти степенной ряд функции Φ_{12} . Значит, такие же свойства у Φ_{21} . По теореме 1 имеем

$$L(\Phi_{12}) \leq l(4(4-\pi)/(\pi^2-8)) + F(\Phi_{12}) \approx 1,712,$$

$$L(\Phi_{21}) \leq l(\pi^2(4-\pi)/(2(\pi^2-8))) + F(\Phi_{21}) \approx 1,860.$$

Из принципа сравнения (7) следует

$$0,739 \|f - Z_n^2 f\| \le \|f - R_n f\| \le 1,400 \|f - Z_n^2 f\|$$

Полученные постоянные лучше, чем в [³] или [⁵]. Пример 5. Сравним типические средние методом Ахиезера—Крейна—

Фавара (см. примеры 1, 2), положив $\varphi_1 = \tilde{\varphi}_r$, $\varphi_2(t) = 1 - t^{r+1}$ (*r* — нечетное) или $\varphi_2(t) = 1 - t^r$ (*r* — четное). Пусть сперва *r* — нечетное. Разложение в степенной ряд функции

$$\Phi_{42}(t) = \frac{1}{c} \left(\frac{1 - \varphi_r(t)}{t^{r+1}} - 1 \right)$$

показывает, что Φ_{12} удовлетворяет всем условиям леммы 2, в частности она выпукла вверх. Но здесь

$$c = \pi r K_r / (2(2^{r+1} - 1)) - 1 < 0.$$
(10)

Поэтому вид выпуклости функции Φ_{21} не известен и мы получим только одностороннее неравенство. По теореме 1 нам надо вычислить $\Phi'_{12}(1)$. Из разложения Φ_{12} на простейшие дроби получаем

$$-\Phi'_{12}(1) = \frac{(2^{r+1}-1)(\pi r K_r - 2r - 2)}{2(2^{r+1}-1) - \pi r K_r}.$$
(11)

Наконец, из теоремы 1 и (7) следует

$$||f - X_n^r f|| \leq \{1 + |c| (l(-\Phi'_{12}(1)) + F(\Phi_{12}))\} ||f - Z_n^{r+1}f||;$$

где с и $\Phi'_{12}(1)$ определяются из (10) и (11), а l и F — из (3) и (4). Аналогично для четного r имеем

$$\|f - X_n^r f\| \leq \{1 + |c| (l(-\Phi'_{12}(1)) + F(\Phi_{12}))\} \|f - Z_n^r f\|_{\mathcal{H}}$$

где

$$c = (2^{r-1} - 1) \pi K_{r-1} / (2^r (2^r - 1)) - 1,$$

$$-\Phi'_{12}(1) = \frac{r}{c} \left(\frac{\pi}{2} K_r - 1\right).$$

Последний, более общий пример сформулируем в виде теорем. Теорема 2. Пусть $\varphi(0) = 1$, $\varphi(1) = 0$, φ — монотонна, дифференцируема, выпукла вверх на [0, 1].

Если φ — сумматорная функция метода U_n , а $\varphi^p(p>1)$ — сумматорная функция метода U_n^p , то

$$\|f - U_n f\| \leq \left\{ 1 + \frac{p-1}{p} l\left(\frac{p}{1-p} \varphi'(1)\right) + F\left(\frac{\varphi - \varphi^p}{1-\varphi^p}\right) \right\} \|f - U_n^p f\|$$

Доказательство. Здесь функция перехода (8) имеет вид

$$\Phi = \frac{p}{p-1} \left(1 - \frac{1-\varphi}{1-\varphi^p} \right).$$

Функция

$$f(x) = \frac{p}{p-1} \left(1 - \frac{1-x}{1-x^p} \right)$$

возрастает и выпукла вверх на [0, 1] при p > 1. Отсюда следует, что $\Phi = f \circ \varphi$ удовлетворяет условиям леммы 1, причем $\tau = p\varphi'(1)/(1-p)$. Утверждение теоремы вытекает из (7) и теоремы 1.

Аналогично доказывается следующая

Теорема 3. Пусть $\varphi(0) = 1$, $\varphi(1) = 0$, φ — монотонна, дифференцируема. Если φ выпукла вверх и $1 или выпукла вниз и <math>p \geq 2$, то

$$\|f - U_n^p f\| \leq \left\{ 1 + (p-1)l(\tau) + F\left(\frac{\varphi - \varphi^p}{1 - \varphi}\right) \right\} \|f - U_n f\|$$

где

$$-\tau = \begin{cases} \varphi'(1)/(p-1), & 1$$

4. Оценку в теореме 1 можно сделать асимптотически точной. Для этого используем известный прием (см., напр. [¹], с. 500) к оценке интеграла

$$I(a) = \int_{0}^{a} \frac{|\sin x|}{x} dx.$$

Получается следующая

Лемма 3. При а≥0 справедлива оценка

$$I(a) \leq \begin{cases} Si(a), & 0 \leq a < \pi, \\ \ln \frac{a}{\pi} + Si(\pi), & \pi \leq a < 2\pi, \\ \frac{2}{\pi} \ln \left(\frac{a}{\pi} - 1\right) + Si(\pi) + \ln 2 + \frac{2}{\pi}, & a \geq 2\pi. \end{cases}$$

Теорема 4. Если сумматорная функция в метода суммирования U_n удовлетворяет условиям леммы 1, то

$$\sup_{n} \|U_{n}\| \leq \begin{cases} l(\tau) + F(\varphi), & 0 < \tau \leq 49, \\ \frac{4}{\pi^{2}} \ln \tau + 2,431; & \tau > 49, \end{cases}$$

где l, F определяются равенствами (3), (4).

Доказательство. Случай 0 < т < 49 является утверждением теоремы 1. При т>49 разобьем интеграл (1) по схеме

$$\int_{0}^{\infty} = \int_{0}^{a} + \int_{a}^{\infty},$$

где в первом интеграле воспользуемся леммой 3, а во втором свойством 3° из леммы 1. В силу (2) имеем

$$\int_{0}^{a} |\Phi(x)| dx \leq -\int_{0}^{4} \varphi'(t) I(at) dt.$$

Последний интеграл представим в виде

$$\int_{0}^{1} = \int_{0}^{\pi/a} + \int_{\pi/a}^{2\pi/a} + \int_{2\pi/a}^{1} \cdot$$

Теперь из леммы 3 следует

$$\int_{0}^{a} |\Phi(x)| dx \leq \frac{2}{\pi} \ln \frac{a}{\pi} + Si(\pi) + \ln 2 + \frac{2}{\pi}$$

Таким образом, полученная оценка интеграла (1) имеет минимум при $a=2\tau$. Предельное значение $\tau \approx 49$ получается сравнением последней оценки с результатом теоремы 1.

Асимтотическую точность теоремы 4 показывает пример 1.

ЛИТЕРАТУРА

- 1. Тиман А. Ф. Теория приближения функций действительного переменного. М., Гос. изд. физ.-матем. лит., 1960.

- изд. физ.-матем. лит., 1900.
 Тригуб Р. М. Теория приближения функций. М., «Наука», 1977, 383—390.
 Жук В. В. Аппроксимация периодических функций. Л., Изд. ЛГУ, 1982.
 Жук В. В., Натансон Г. И. Тригонометрические ряды Фурье и элементы теории аппроксимации. Л., Изд. ЛГУ, 1983.
 Кивинукк А. Изв. АН ЭССР. Физ. Матем., 31, № 1, 17—27 (1982).

Таллинский политехнический институт

Поступила в редакцию 13/XII 1984

A. KIVINUKK

LEBESGUE'I KONSTANTIDE HINDAMISEST

On leitud summatoorse funktsiooniga määratud Fourier' rea summeerimismeetodite Lebesgue'i konstantide arvulised hinnangud. Saadud tulemusi on kasutatud erinevate summeerimismeetodite lähenduskiiruste võrdlemisel,

A. KIVINUKK

ON ESTIMATION OF LEBESGUE CONSTANTS

For a continuous $f \in C_{2\pi}$ we may form a summation method of its Fourier series

$$U_n(j, x) = \frac{a_0}{2} + \sum_{k=1}^n \varphi\left(\frac{k}{n+1}\right) (a_k \cos kx + b_k \sin kx)$$

defined by a function $\varphi \in C_{[0,1]}$ with $\varphi(0) = 1$, $\varphi(t) = 0$ $(t \ge 1)$. In order to prove a numerical estimation of Lebesgue constants (i.e. norms) of methods U_n we use the formula [4]

$$\sup_{n} \|U_{n}\| = \frac{2}{\pi} \int_{0}^{\infty} \left| \int_{0}^{1} \varphi(t) \cos xt \, dt \right| \, dx.$$

Theorem. Let φ be a monotonic differentiable convex function on [0, 1] with $\varphi(0) = 1$, $\varphi(1) = 0$. Then

$$\sup_{n} \|U_{n}\| \leq \frac{2}{\pi} \int_{0}^{1} \varphi(t) \frac{\sin \pi t}{t} dt + \frac{2}{\pi} \times \begin{cases} 2\tau/\pi, & 0 < \tau \leq \pi/2, \\ 1 + \ln(2\tau/\pi), & \tau \geq \pi/2, \end{cases}$$

where $\tau = -\phi'(1)$.

S

A BRAMMORT R

The example $\varphi(t) = 1 - t^r$ $(r \ge 1)$ on [0, 1] shows that the estimation in the Theorem is exact. For proving this, we have used a result in [1]. Let us remark that the Theorem is true for piecewise convex function φ , too. The Theorem will be applicable to a comparison theorem of two different summa-

the Theorem will be applicable to a comparison theorem of two different summation methods $U_n^{(i)}$ (i=1, 2) defined by functions φ_i (i=1, 2), respectively. It is shown (cf. [²]) that

$$\|f - U_n^{(1)} f\|_{c_{\frac{2\pi}{2}}} \leq (1 + |c| \|V_n\|) \|f - U_n^{(2)} f\|_{c_{\frac{2\pi}{2}}},$$

where the summation method V_n is defined by

$$\varphi = \frac{1}{c} \left(\frac{1-\varphi_1}{1-\varphi_2} - 1 \right).$$

Here the constant c must be chosen such that $\varphi \in C_{[0,1]}$ with $\varphi(0) = 1$. For example, if $\varphi_1(t) = \cos(\pi t/2)$ (method of Rogosinski R_n) and $\varphi_2(t) = 1 - t^2$ (typical means Z_n^r , where r=2), then $c=\pi^2/8-1$ and the Theorem yields

$$0,739 \|f - Z_n^2 f\|_{\mathcal{C}_{2\pi}} \leq \|f - R_n f\|_{\mathcal{C}_{2\pi}} \leq 1,400 \|f - Z_n^2 f\|_{\mathcal{C}_{2\pi}}.$$