EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 31. KÖIDE FÜÜSIKA * MATEMAATIKA. 1982, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ФИЗИКА * МАТЕМАТИКА. 1982, № 4

УДК 517.958: 532/.534

(1)

Т. ТОБИАС

О ПРИБЛИЖЕННОМ ОПРЕДЕЛЕНИИ ПАРАМЕТРОВ В ОДНОЙ НЕЛИНЕЙНОЙ МОДЕЛИ РАСПРОСТРАНЕНИЯ ВОЛН

T. TOBIAS. PARAMEETRITE LIGIKAUDNE MÄÄRAMINE ÜHES MITTELINEAARSES LAINELEVIMUDELIS

T. TOBIAS. APPROXIMATIVE DETERMINATION OF PARAMETERS IN CERTAIN NONLINEAR WAVE PROPAGATION MODEL

(Представил Н. Алумяэ)

Пусть u = u(t, x; k) — решение уравнения

$$u_{tt} - f(k, u_x) u_{xx} = 0,$$

 $u(0, x; k) = u_t(0, x; k) = 0, \quad u_x(t, 0; k) = \varphi(t), \quad \lim u(t, x; k) = 0,$

где $k = (k_1, \ldots, k_n) \in M$, а M — ограниченное, выпуклое и замкнутое в R_n множество.

Предположим, что функция $f(k, u_x)$ такова, что существуют непрерывные $\frac{\partial u}{\partial k}$, $\frac{\partial u_x}{\partial k}$, $\frac{\partial f}{\partial k}$ и $\frac{\partial f(k, y)}{\partial y}$. Предположим еще, что если $k^{(m)} \rightarrow k$, то $u(t, x; k^{(m)})$ и его производные равномерно сходятся к u(t, x; k) и его производным.

Пусть $f(k, u_x) > 0$ при всех $k \in M$. Тогда уравнение (1), как уравнение гиперболического типа, является нелинейной моделью распространения волн деформации в упругой среде [¹]. Часто выбирают $f(k, u_x) = 1 + k_1 u_x + \ldots + k_n (u_x)^n$ или $f(k, u_x) = [1 + u_x]^{-(1+k)}$, k > 0.

Рассмотрим т. н. обратную задачу определения параметра k по результатам наблюдений.

Пусть имеется возможность измерить деформацию в точке x = L, т. е. пусть

$$u_x(t,L;k) = z(t) + \varepsilon(t), \quad 0 < t \le T.$$
(2)

По известной функции z(t) требуется определить неизвестный параметр $k \in M$, характеризующий свойства исследуемой среды.

Такая задача рассмотрена в [¹], где выведены асимптотические формулы в предположении малых начальных деформаций.

В данном сообщении предлагается другой метод: задача определения параметра k по наблюдаемому значению z(t) рассматривается как задача оптимизации, т. е. в качестве истинного значения параметра выбирается \overline{k} такое, чтобы решение $u_x(t, L; k)$ наилучшим образом (в среднеквадратичном смысле) соответствовало наблюденному значению z(t).

Пусть

$$J(k) = \int_{0}^{T} [u_{x}(t,L;k) - z(t)]^{2} dt.$$
(3)

Требуется определить $\bar{k} \in M$ так, чтобы $\min_{k \in M} J(k) = J(\bar{k})$. Так как

437

M — замкнутое ограниченное множество и u_x — непрерывная по k функция, то \bar{k} существует. Если z(t) — точное значение деформации в точке x = L (т. е. $\varepsilon(t) \equiv 0$), то min J(k) = 0 и $\bar{k} = k^*$, где $k^* \in M$ — истинное значение параметра k.

Для минимизации функции J(k) можно воспользоваться методом проекции градиента. Построим последовательность {k^(m)} приближений по правилу

$$k^{(m+1)} = P_M(k^{(m)} - i_m \operatorname{grad} J(k^{(m)})), \quad m = 0, 1, \dots .$$
(4)

Здесь $P_M(l)$ — проекция элемента $l \in R_n$ на множество M, а величина t_m — длина шага. Условия сходимости последовательности $\{k^{(m)}\}$ к локальному минимуму функции J(k) и способы выбора шага t_m можно найти, например, в [²].

Выведем формулу для вычисления градиента функции J(k). Пусть $v_i = v_i(t, x; k) = \frac{\partial u}{\partial k_i}$ и $u^{\Delta} = u(t, x; k + \Delta k)$, где $k + \Delta k = (k_1 + \Delta k_1, \dots, k_n + \Delta k_n)$. Тогда

$$(u^{\Delta} - u)_{tt} - \{ [f(k + \Delta k, u_{x}^{\Delta}) u_{xx}^{\Delta} - f(k, u_{x}^{\Delta}) u_{xx}^{\Delta}] + \\ + [f(k, u_{x}^{\Delta}) u_{xx}^{\Delta} - f(k, u_{x}) u_{xx}^{\Delta}] + [f(k, u_{x}) u_{xx}^{\Delta} - f(k, u_{x}) u_{xx}] \} = 0.$$

Если разделить это выражение на Δk_i и устремить $\Delta k \rightarrow 0$, то получим уравнение для v_i :

$$(v_i)_{tt} - [f(k, u_x) (v_i)_x]_x = \frac{\partial f(k, u_x)}{\partial k_i} u_{xx},$$
(5)

удовлетворяющее условиям

$$v_i(0,x;k) = \frac{\partial v_i(0,x;k)}{\partial t} = 0, \quad \frac{\partial v_i(t,0;k)}{\partial x} = 0, \quad \lim_{x \to \infty} v_i(t,x;k) = 0.$$

Очевидно, что $\frac{\partial J}{\partial k_i} = 2 \int_0^T [u_x(t, L; k) - z(t)] (v_i)_x(t, L; k) dt$. Преобразуем это выражение. Введем сопряженное к (1) уравнение для функции p = p(t, x; k):

$$p_{tt} - (f(k, u_x) p_x)_x = -2[u_x - z(t)]\delta'(x - L),$$
(6)

$$p(T, x; k) = \frac{\partial p(T, x; k)}{\partial t} = 0, \quad \frac{\partial p(t, 0; k)}{\partial x} = 0, \quad \lim_{x \to \infty} p(t, x; k) = 0.$$
(7)

Здесь $\delta(x)$ — дельта-функция, т. е. $\int_{0}^{\infty} \delta'(x-L)g(x) dx = -g'(L)$. Умножим обе части уравнения (6) на v_i и проинтегрируем по области $(t, x) \in D = (0, T) \times (0, \infty)$. Интегрируя по частям и учитывая краевые условия функции v_i и p, получим после преобразования, что

$$\frac{\partial J}{\partial k_i} = \int_0^\infty \int_0^T [p_{tt} - (f(k, u_x) p_x)_x] v_i \, dt \, dx =$$
$$= \int_0^\infty \int_0^T [(v_i)_{tt} - (f(k, u_x) (v_i)_x)_x] p \, dt \, dx =$$
$$= \int_0^\infty \int_0^T \frac{\partial f(k, u_x)}{\partial k_i} u_{xx} p \, dt \, dx.$$

438

Итак,

grad
$$J(k) = \int_{0}^{\infty} \int_{0}^{T} \operatorname{grad} f(k, u_x) u_{xx}(t, x; k) p(t, x; k) dt dx,$$
 (8)

где grad $f(k, u_x) = \left(\frac{\partial f}{\partial k_1}, \ldots, \frac{\partial f}{\partial k_n}\right).$

Подобный метод вычисления градиента с помощью сопряженной системы был использован, например, в [³].

Рассмотрим два примера. Отметим, что если уравнение (1) описывает распространение волн в реальных средах, то можно априори допустить [1] (с. 43), что $|u_x| \ll 1$.

1. Пусть $f(k, u_x) = c^2(1 + ku_x)$. Тогда

$$J'(k) = c^2 \int_{0}^{\infty} \int_{0}^{T} u_x u_{xx} p \, dt \, dx,$$

где функция p = p(t, x; k) удовлетворяет уравнению

$$p_{tt} = c^2 p_{xx} = kc^2 (u_x p_x)_x = -2[u_x - z(t)] \delta'(x - L)$$

с условиями (7).

2. Пусть $f(k, u_x) = c^2(1 + u_x)^{-(1+k)}$. Тогда

$$J'(k) = -c^2 \int_0^{\infty} \int_0^T (1+u_x)^{-(1+k)} \ln(1+u_x) u_{xx} p \, dt \, dx,$$

где функция p удовлетворяет условию $p_{tt} - c^2[(1 + u_x)^{-(1+k)}p_x]_x = -2[u_x - -z(t)]\delta'(x-L)$ и условиям (7).

Из вышеизложенного видно, что вычисление градиента по точному выражению (8) — весьма трудоемкая процедура. Поэтому на практике целесообразнее, по-видимому, привлекать методы минимизации, не содержащие производных.

ЛИТЕРАТУРА

- 1. Нигул У. К., Нелинейная акустодиагностика, Л., «Судостроение», 1981.
- 2. Васильев Ф. П., Численные методы решения экстремальных задач, М., «Наука», 1980.
- Lions, J. L., In: Lecture Notes in Control and Information Sciences, 1, Springer, Berlin, 1978, p. 11-41.

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 4/III 1982