EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 30. KÖIDE FÜÜSIKA * MATEMAATIKA. 1981, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ФИЗИКА * МАТЕМАТИКА. 1981, № 4

УДК 535.345.6

П. КАРД

ОСНОВНЫЕ ФОРМУЛЫ ТЕОРИИ ИНТЕРФЕРЕНЦИОННО-ПОЛЯРИЗАЦИОННЫХ СВЕТОФИЛЬТРОВ

Введение

В [1] была развита по образцу теории многослойных интерференционных пленок теория интерференционно-поляризационных светофильтров типа Шольца, а в [2] было показано применение этой теории к синтезу таких фильтров. В настоящей статье нашей целью является, во-первых, приведение основных формул теории к более простому виду и, во-вторых, вывод некоторых дальнейших следствий, полезных при более детальном исследовании свойств светофильтров.

Напомним, что фильтр типа Шольца состоит из последовательности параллельно расположенных одна за другой плоскопараллельных двупреломляющих пластинок, оптические оси которых параллельны их поверхностям. Эта стопа пластинок обрамлена входным и выходным поляризаторами. Свет проходит фильтр обычно в перпендикулярном пластинкам направлении, принимаемом за ось z. Каждая пластинка характеризуется толщиной h и азимутом φ , т. е. углом, образуемым оптической осью с произвольно выбранной осью x. Эллиптическую поляризацию идущей в направлении оси z монохроматической световой волны описываем матрицей

$$A = \begin{pmatrix} A_x \\ A_y \end{pmatrix} , \tag{1}$$

где A_x , A_y — компоненты комплексной амплитуды электрического вектора волны. Через L обозначаем матрицу, согласно которой матрица поляризации преобразуется при прохождении волны сквозь одну пластинку. Тогда, если N — число пластинок, то матрица A' прошедшего сквозь все пластинки света связана с матрицей падающего на первую пластинку света формулой

$$A' = FA, \tag{2}$$

где

$$F = L_N L_{N-1} \dots L_1. \tag{3}$$

Здесь, как и ранее, мы пренебрегаем отражением света на поверхностях пластинок.

Для матриц L_k имеем формулу

$$L_{k} = \Phi(-\phi_{k}) \Gamma(\gamma_{k}) \Phi(\phi_{k})$$
(4)

или, равносильно,

$$L_{\mathcal{H}} = \cos \gamma_{h} E + i \sin \gamma_{h} \overline{\Phi} (2\varphi_{h}).$$
(5)

В этих формулах Е — единичная матрица,

$$\Phi(\varphi) = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}, \qquad (6)$$

$$\overline{\Phi}(\varphi) = \begin{pmatrix} \cos\varphi & \sin\varphi \\ \sin\varphi & -\cos\varphi \end{pmatrix}$$
(7)

И

$$\Gamma(\gamma) = \begin{pmatrix} e^{i\gamma} & 0\\ 0 & e^{-i\gamma} \end{pmatrix}.$$
 (8)

Определим вдобавок матрицу

$$\overline{\Gamma}(\gamma) = \begin{pmatrix} 0 & ie^{-i\gamma} \\ -ie^{i\gamma} & 0 \end{pmatrix}.$$
(9)

Аргумент ук определяется формулой

$$\gamma_{k} = (\pi h_k / \lambda) (n_o - n_e), \qquad (10)$$

где λ — длина волны, n_o — обыкновенный и n_e — необыкновенный показатель преломления пластинок.

Матрицы Ф и Ф, а также Г и Г, удовлетворяют соотношениям одинакового вида

$$\Phi(\varphi_{2}) \Phi(\varphi_{1}) = \Phi(\varphi_{1} + \varphi_{2}),$$

$$\overline{\Phi}(\varphi_{2}) \overline{\Phi}(\varphi_{1}) = \Phi(\varphi_{1} - \varphi_{2}),$$

$$\overline{\Phi}(\varphi_{2}) \Phi(\varphi_{1}) = \overline{\Phi}(\varphi_{1} + \varphi_{2}),$$

$$\Phi(\varphi_{2}) \overline{\Phi}(\varphi_{1}) = \overline{\Phi}(\varphi_{1} - \varphi_{2})$$

$$\Gamma(\gamma_{2}) \Gamma(\gamma_{1}) = \Gamma(\gamma_{1} + \gamma_{2}),$$
(11)

И

$$\Gamma(\gamma_{2}) \Gamma(\gamma_{1}) = \Gamma(\gamma_{1} + \gamma_{2}),$$

$$\overline{\Gamma}(\gamma_{2}) \overline{\Gamma}(\gamma_{1}) = \Gamma(\gamma_{1} - \gamma_{2}),$$

$$\overline{\Gamma}(\gamma_{2}) \Gamma(\gamma_{1}) = \overline{\Gamma}(\gamma_{1} + \gamma_{2}),$$

$$\Gamma(\gamma_{2}) \overline{\Gamma}(\gamma_{1}) = \overline{\Gamma}(\gamma_{1} - \gamma_{2}).$$
(12)

Отметим, что матрица $\Phi(\varphi)$ означает у нас теперь то же, что матрица $\Phi(-\varphi)$ в [¹], матрица $\Gamma(\gamma)$ то же, что $M(\gamma)$, а матрица $\overline{\Gamma}(\gamma)$ то же, что

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \overline{M}(\mathbf{y}) \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Смысл матрицы $\Phi(\phi)$ остался прежним.

Основные формулы

Для матрицы F, преобразующей, согласно формуле (2), матрицу поляризации пропускаемого стопой пластинок света, можно найти две простые формулы. Первая получается прямым перемножением в формуле (3) матриц $L_{\bar{n}}$, взятых в виде (5). С учетом второй и третьей формул (11) получаем следующее выражение

 $F = \sum i^s \sin \gamma_{h_1} \sin \gamma_{h_2} \dots \sin \gamma_{h_s} \cos \gamma_{l_1} \cos \gamma_{l_2} \dots \cos \gamma_{l_{N-s}} \times$

$$\times \Phi^{(-)^{\circ}}(2\varphi_{k_1}-2\varphi_{k_2}+\dots-(-1)^{s}2\varphi_{k_s}), \qquad (13)$$

где сумма берется по всем разбиениям индексов 1, 2, ..., N на две группы: $k_1, k_2, ..., k_s$ и $l_1, l_2, ..., l_{N-s}$, причем $k_1 < k_2 < ... < k_s$ и s = 0, 1, ..., N. В сумме, очевидно, $2^{N'}$ членов. Φ означает Φ при sчетном и $\overline{\Phi}$ при s нечетном. Для элементов матрицы F имеем, согласно (6) и (7), формулы

$$F_{11} = F_{22}^{\bullet} = \sum i^s \sin \gamma_{h_1} \sin \gamma_{h_2} \dots \sin \gamma_{h_s} \cos \gamma_{l_1} \cos \gamma_{l_2} \dots \cos \gamma_{l_{N-s}} \times \\ \times \cos \left(2\varphi_{h_1} - 2\varphi_{h_2} + \dots - (-1)^s 2\varphi_{h_s} \right)$$
(14)

И

$$F_{12} = -F_{2t}^* = \sum i^s \sin \gamma_{h_t} \sin \gamma_{h_2} \dots \sin \gamma_{h_s} \cos \gamma_{l_t} \cos \gamma_{l_2} \dots \cos \gamma_{l_{N-s}} \times \\ \times \sin (2\varphi_{h_1} - 2\varphi_{h_2} + \dots - (-1)^s 2\varphi_{h_s}).$$
(15)

Другая формула для F получается следующим образом. Подставляя в формулу (3) выражения (4) для L_k, находим

$$F = \Phi(-\phi_N) \Gamma(\gamma_N) \Phi(\phi_N) \Phi(-\phi_{N-1}) \Gamma(\gamma_{N-1}) \Phi(\phi_{N-1}) \dots$$
(16)

$$\dots \Phi(-\varphi_2) \Gamma(\gamma_2) \Phi(\varphi_2) \Phi(-\varphi_1) \Gamma(\gamma_1) \Phi(\varphi_1).$$

Обозначив

$$\varphi_0 = \varphi_{N+1} \equiv 0, \tag{17}$$

так что

И

$$\Phi\left(-\varphi_{0}\right) = \Phi\left(\varphi_{N+1}\right) = E, \qquad (18)$$

$$k+1 = \varphi_k - \varphi_{k+1}, \quad k = 0, 1, \dots, N,$$
 (19)

перепишем, учитывая первую формулу (11), выражение (16) в виде

$$= \Phi \left(-\phi_{N,N+1}\right) \Gamma \left(\gamma_{N}\right) \Phi \left(-\phi_{N-1,N}\right) \Gamma \left(\gamma_{N-1}\right) \dots$$

$$\dots \Phi \left(-\phi_{23}\right) \Gamma \left(\gamma_{2}\right) \Phi \left(-\phi_{12}\right) \Gamma \left(\gamma_{1}\right) \Phi \left(-\phi_{01}\right). \tag{20}$$

Учитывая первую формулу (12), находим

 Φ_k

(

$$F_{i} = \Gamma(\gamma_{0N}) \left[\Gamma(-\gamma_{0N}) \Phi(-\phi_{N,N+1}) \Gamma(\gamma_{0N}) \right] \times \left[\Gamma(-\gamma_{0N-1}) \Phi(-\phi_{N,N+1}) \Gamma(\gamma_{0N-1}) \right]$$
(21)

$$[\Gamma(-\gamma_{01}) \Phi(-\varphi_{12}) \Gamma(\gamma_{01})][\Gamma(-\gamma_{00}) \Phi(-\varphi_{01}) \Gamma(\gamma_{00})],$$

где

$$\gamma_0 = \gamma_{00} = 0, \qquad (22)$$

$$Q_{h} = \Gamma(-\gamma_{0h}) \Phi(-\phi_{h,h+1}) \Gamma(\gamma_{0h}); \qquad (23)$$

тогда

$$F = \Gamma(\mathbf{v}_{0N}) Q_N Q_{N-1} \dots Q_1 Q_0. \tag{24}$$

Перемножая матрицы в формуле (23), находим другое выражение для Q_h :

 $\gamma_{0k} = \gamma_0 + \gamma_1 + \ldots + \gamma_k, \quad k = 0, 1, \ldots, N.$

$$Q_k = \cos \varphi_{k,k+1} E + i \sin \varphi_{k,k+1} \Gamma(2\gamma_{0k}).$$
⁽²⁵⁾

Формулы (23) и (25) аналогичны формулам (4) и (5), а формула (24) — формуле (3).

Остается перемножить матрицы в формуле (24), беря все Q в виде (25). В результате, учитывая формулы (12), приходим к аналогичному (13) выражению

$$F = \sum i^{s} x \varphi_{01} x \varphi_{12} \dots x \varphi_{N, N+1} \Gamma^{(-)}(\varepsilon_{1} \gamma_{1} + \varepsilon_{2} \gamma_{2} + \dots + \varepsilon_{N} \gamma_{N}), \qquad (26)$$

где хф означает sin ϕ или cos ϕ , причем сумма берется по всем 2^{N+1} распределениям х на синусы и косинусы, а *s* означает число синусов (*s* = 0, 1, ..., *N* + 1); Γ означает Γ при *s* четном и $\overline{\Gamma}$ при *s* нечетном; $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$ равны +1 или -1 согласно правилу: $\varepsilon_k \varepsilon_{k+1} = \pm 1$, если х $\phi_{k,k+1} = \frac{\cos}{\sin} \phi_{k,k+1}$, причем $\varepsilon_0 = 1$. Отсюда ясно, что множитель х $\phi_{N,N+1}$ не участвует в определении знаков членов аргумента Γ . Он может быть или синусом, или косинусом, и в обоих случаях аргумент Γ один и тот же, но в одном случае Γ есть Γ , а в другом $\overline{\Gamma}$.

В силу формул (8) и (9) из формулы (26) находим следующие выражения матричных элементов:

$$F_{11} = F_{22}^* = \sum_{s \text{ четно}} i^s x \varphi_{01} x \varphi_{12} \dots x \varphi_{N, N+1} \exp\left[i\left(\varepsilon_1 \gamma_1 + \varepsilon_2 \gamma_2 + \dots + \varepsilon_N \gamma_N\right)\right]$$
(27)

И

$$F_{21} = -F_{12}^* = \sum_{s \text{ hever ho}} i^{s-1} x \varphi_{01} x \varphi_{12} \dots x \varphi_{N, N+1} \exp[i(\varepsilon_1 \gamma_1 + \varepsilon_2 \gamma_2 + \dots + \varepsilon_N \gamma_N)].$$
(28)

Выведенные в этом разделе основные формулы сходны с полученными в [1], но проще и удобнее тех.

Разложение в ряд коэффициента пропускания фильтра

Примем направление входного поляризатора за ось x и амплитуду прошедшего поляризатор света за единицу, так что

$$A = \begin{pmatrix} 1\\0 \end{pmatrix}. \tag{29}$$

Тогда

$$A' = \begin{pmatrix} F_{11} \\ F_{21} \end{pmatrix}, \tag{30}$$

т. е. амплитуда прошедшего фильтр света равна F_{11} , если выходной поляризатор параллелен входному, и F_{21} , если выходной поляризатор скрещен с входным. Коэффициент пропускания фильтра равен в первом случае $F_{11}F_{11}^*$, а во втором $F_{21}F_{21}^*$. А так как, согласно формулам (14) и (15), выражения F_{11} и F_{21} сходны, и притом, в силу формул (3) и (4),

$$F_{11}F_{22} - F_{12}F_{21} = F_{11}F_{11}^* + F_{21}F_{21}^* = 1, \tag{31}$$

то достаточно рассмотреть подробно только один из коэффициентов, например, $F_{11}F_{11}^*$.

В этом разделе, продолжая аналогию с теорией интерференцион-

ных пленок (см. [³], § 12), разложим коэффициент пропускания фильтра в ряд. Для этого есть два способа, но в настоящей статье изложим только один из них. Разложение позволит вывести для коэффициента пропускания очень простую приближенную формулу.

Исходим из формулы (14). Перепишем ее, введя для удобства величины φ_0 и φ_{N+1} (см. формулу (17)), в виде

$$F_{11} = \sum i^s \sin \gamma_{k_1} \sin \gamma_{k_2} \dots \sin \gamma_{k_s} \cos \gamma_{l_1} \cos \gamma_{l_2} \dots \cos \gamma_{l_{N-s}} \times \cdots$$

Рассматривая F_{11} как функцию $\gamma_1, \gamma_2, \ldots, \gamma_N$, выразим эти аргументы в виде

$$\gamma_k = g_k \pi/2 + \Delta \gamma_k, \quad k = 1, 2, \dots, N,$$
 (33)

где g_h — целые числа, а $\Delta \gamma_h$ возможно малы, и будем разлагать $F_{11}F_{11}^*$ в ряд Тейлора по степеням $\Delta \gamma_h$. Для этого найдем сначала значение F_{11} и производных этой величины при всех $\Delta \gamma_h = 0$.

Пусть Nr есть число пластинок, у которых

$$g_k \equiv r \pmod{4}, \quad r = 1, 2, 3, 4.$$
 (34)

Положив в формуле (32) все $\Delta \gamma_h = 0$, видим, что в сумме все члены, кроме одного, обращаются в нуль. Отличным от нуля оказывается тот член, в котором аргументами синусов являются все γ_h с нечетным r, а аргументами косинусов все γ_h с четным r. Следовательно,

$$(F_{11})_0 = i^{N_1 + N_3} (-1)^{N_2 + N_3} \cos \theta_{0, N+1}, \tag{35}$$

где

$$\theta_{0,N+1} = \varphi_0 - 2\varphi_{m_1} + 2\varphi_{m_2} - + \dots + (-1)^{N_1 + N_3} 2\varphi_{m_{N_1 + N_3}} - (-1)^{N_1 + N_3} \varphi_{N+1},$$
(36)

причем $m_1 < m_2 < \ldots < m_{N_1+N_3}$ и эти индексы принадлежат пластинкам с нечетными r.

Выразим далее производные от F_{11} по γ_h , взятые при всех $\Delta \gamma_h = 0$. Так как производная от синуса равна косинусу, а от косинуса синусу с минусом, то единственный член F_{11} , производная которого по γ_h отлична при всех $\Delta \gamma_h = 0$ от нуля, содержит соз γ_h или sin γ_h , если r нечетно или четно, соответственно. Следовательно, для производной получится сходное с формулой (35) выражение, только добавляется множитель i и вместо $\theta_{0, N+1}$ аргументом косинуса будет аналогичное (36) выражение, но без члена $\pm 2\varphi_h$, если он входит в $\theta_{0, N+1}$, и с этим членом, если его в $\theta_{0, N+1}$ нет. Согласно сказанному пишем формулу

$$(F_{11,k})_0 = i^{N_1 + N_3 + 1} (-1)^{N_2 + N_3} \cos(\theta_{0k} - \theta_{k,N+1}), \qquad (37)$$

где индекс k у F_{11} означает взятую по γ_h производную, а θ_{0h} и $\theta_{h, N+1}$ определяются следующим образом: θ_{0h} содержит все те члены из $\theta_{0, N+1}$, индексы которых меньше k, а также член φ_h (независимо от наличия или отсутствия члена $2\varphi_h$ в $\theta_{0, N+1}$) со знаком, противоположным знаку предшествующего ему члена; $\theta_{h, N+1}$ содержит все те члены из $\theta_{0, N+1}$, индексы которых больше k, а также член φ_h (независимо от наличия или отсутствия члена $2\varphi_h$ в $\theta_{0, N+1}$) со знаком, противоположным знаку предшествующего ему члена; $\theta_{h, N+1}$ содержит все те члены из $\theta_{0, N+1}$, индексы которых больше k, а также член φ_h (независимо от наличия или отсутствия члена $2\varphi_h$ в $\theta_{0, N+1}$) со знаком, противоположным знаку следующего за ним члена.

Рассуждая таким же образом и дальше, находим формулу второй производной

$$(F_{11,kl})_0 = i^{N_1 + N_3 + 2} (-1)^{N_2 + N_3} \cos(\theta_{0k} - \theta_{kl} + \theta_{l,N+1}), \quad k \leq l, \tag{38}$$

где θ_{hl} определяются формулой

$$\theta_{kl} = \theta_{0,N+1} - \theta_{0k} - \theta_{l,N+1}. \tag{39}$$

Легкс видеть, что

$$\theta_{kl} + \theta_{lm} = \theta_{km}, \tag{40}$$

где $0 \leq k \leq l \leq m \leq N+1$, н

$$\theta_{hh} = 0. \tag{41}$$

Наконец, общая формула производной *n*-го порядка (при всех $\Delta \gamma_h = 0$) получается в виде

$$(F_{11, k_1 k_2 \dots k_n})_0 = i^{N_1 + N_3 + n} (-1)^{N_2 + N_3} \times \\ \times \cos(\theta_{0k_1} - \theta_{k_1 k_2} + \dots - (-1)^n \theta_{k_{n-1} k_n} + (-1)^n \theta_{k_n, N+1}), \qquad (42)$$
$$k_1 \leqslant k_2 \leqslant \dots \leqslant k_n.$$

Далее выразим производные от $F_{11}F_{11}^*$. Так как эта величина является четной функцией от всех γ_h , то все производные нечетного порядка равны нулю. А общая формула производной четного порядка 2n имеет вид

$$(F_{11}F_{11}^*)_{h_1h_2\dots h_{2n}} = \sum F_{11, l_1l_2\dots l_p} F_{11, m_1m_2\dots m_{2n-p}}^*, \tag{43}$$

где $k_1 \leq k_2 \leq \ldots \leq k_{2n}$, $l_1 \leq l_2 \leq \ldots \leq l_p$, $m_1 \leq m_2 \leq \ldots \leq m_{2n-p}$; совокупность индексов k тождественна совокупности индексов l и m, а сумма берется по всем 2^{2n} комбинациям разбиения совокупности индексов k на совокупности индексов l и m. Для простоты здесь и далее опускается индекс 0, означающий, что производные берутся при всех $\Delta \gamma_k = 0$. Подставляя в правую часть формулы (43) выражения производных из формулы (42), находим

$$(F_{11}F_{11}^{*})_{h_{1}h_{2}...h_{2n}} =$$

$$= \sum (-1)^{n+p} \cos (\theta_{0l_{1}} - \theta_{l_{1}l_{2}} + \dots - (-1)^{p} \theta_{l_{p-1}l_{p}} + (-1)^{p} \theta_{l_{p},N+1}) \times$$

$$\times \cos (\theta_{0m_{1}} - \theta_{m_{1}m_{2}} + \dots - (-1)^{p} \theta_{m_{2n-p-1}m_{2n-p}} + (-1)^{p} \theta_{m_{2n-p},N+1}), \quad (44)$$

причем члены в сумме, очевидно, попарно равны. Для упрощения этой формулы обратим внимание на то, что аргументы всех косинусов можно написать в виде

$$\theta_{0k_1} \pm \theta_{k_1k_2} \pm \ldots \pm \theta_{k_{2n-1}k_{2n}} + (-1) p_{\theta_{k_{2n},N+1}}$$

(см. формулу (40)), причем каждая из 2^{2n-1} комбинаций знаков членов написанных в этом виде аргументов повторяется в формуле дважды, а в одном и том же члене суммы каждому сохранению знака в последовательности знаков одного из аргументов соответствует перемена знака в другом, и наоборот. Поэтому, преобразуя произведение косинусов в половину суммы косинусов от суммы и разности аргументов, находим

$$(F_{11}F_{11})_{k_1k_2...k_{2n}} = 2^{n-1} \sum (-1)^{n+p} \cos (2\theta_{0k_1} \pm 2\theta_{k_2k_3} \pm ... \pm 2\theta_{k_{2n}, N+1}) + 2^{n-1} \sum (-1)^{n+p} \cos (\pm 2\theta_{k_1k_2} \pm 2\theta_{k_2k_4} \pm ... \pm 2\theta_{k_{2n-1}k_{2n}}),$$
(45)

где обе суммы берутся по всем 2^n комбинациям знаков членов аргумента косинуса. Легко видеть, что во второй сумме все члены попарно сокращаются, так как члены, различающиеся знаками всех членов

338

аргумента косинуса, различаются четностью *p*. Наоборот, в первой сумме четность *p* влияет только на знак последнего члена аргумента косинуса, так что формула (45) принимает вид

$$F_{11}F_{11}^{*}_{11}_{k_1k_2...k_{2n}} = 2^{n-1}(-1)^n \sum \left\{ \cos \left(2\theta_{0k_1} \pm 2\theta_{k_2k_3} \pm \ldots \pm 2\theta_{k_{2n-2}k_{2n-1}} + \right) \right\}$$

$$+2\theta_{k_{2n},N+1})-\cos\left(2\theta_{0k_{1}}\pm2\theta_{k_{2}k_{3}}\pm\ldots\pm2\theta_{k_{2n-2}k_{2n-1}}-2\theta_{k_{2n},N+1}\right)\}.$$
 (46)

Сумма берется теперь по 2^{n-1} комбинациям знаков. Преобразуя разность косинусов в удвоенное произведение синусов полусуммы и полуразности, находим

$$(F_{11}F_{11}^{*})_{k_1k_2...k_{2n}} = -2^n (-1)^n \sum \sin(2\theta_{0k_1} \pm 2\theta_{k_2k_3} \pm \dots \\ \dots \pm 2\theta_{k_{2n-2}k_{2n-1}}) \sin 2\theta_{k_{2n}, N+1}.$$
(47)

Отсюда окончательно

$$(F_{11}F_{11}^{*})_{k_{1}k_{2}...k_{2n}} = (-1)^{n+1}2^{2n-1}\sin 2\theta_{0k_{1}}\cos 2\theta_{k_{2}k_{3}}...$$

$$\ldots\cos 2\theta_{k_{2n-1}}\sin 2\theta_{k_{2n},N+1},$$

$$k_{1} \leqslant k_{2} \leqslant \ldots \leqslant k_{2n}.$$
(48)

Теперь мы можем написать ряд Тейлора для $F_{11}F_{11}^*$. Учитывая формулы (35) и (48), находим

$$F_{11}F_{11}^{*} = \cos^{2}\theta_{0,N+1} - \sum_{n=1}^{\infty} (-1)^{n} \frac{2^{2n-1}}{(2n)!} \sum_{1 \leq k_{1} \leq k_{2} \leq \dots \leq k_{2n} \leq N} P_{k_{1}k_{2}\dots k_{2n}} \times$$

 $\times \sin 2\theta_{0k_1} \cos 2\theta_{k_2k_3} \dots \cos 2\theta_{k_{2n-2}k_{2n-1}} \sin 2\theta_{k_{2n},N+1} \Delta \gamma_{k_1} \Delta \gamma_{k_2} \dots \Delta \gamma_{k_{2n}}, \quad (49)$

где Р означает число перестановок индексов.

Совершенно аналогичным образом можно получить разложение в ряд Тейлора и для коэффициента $F_{21}F_{21}^*$. Проще, однако, воспользоваться формулой (31), которая сразу дает

$$F_{21}F_{21}^{*} = \sin^{2}\theta_{0,N+1} + \sum_{n=1}^{\infty} (-1)^{n} \frac{2^{2n-1}}{(2n)!} \sum_{1 \le h_{1} \le h_{2} \le \dots \le h_{2n} \le N} P_{h_{1}h_{2}\dots h_{2n}} \times$$

 $\times \sin 2\theta_{0k_1} \cos 2\theta_{k_2k_3} \dots \cos 2\theta_{k_{2n-2}k_{2n-1}} \sin 2\theta_{k_{2n},N+1} \Delta \gamma_{k_1} \Delta \gamma_{k_2} \dots \Delta \gamma_{k_{2n}}.$ (50)

Приближенная формула коэффициента пропускания узкополосного фильтра

При выводе разложений (49) и (50) мы не делали никаких предположений о составе фильтра, т. е. о толщинах и азимутах пластинок. В этом смысле эти разложения являются вполне общими. Применим их теперь к узкополосному фильтру, подобному синтезированным в [²]. Примем толщины пластинок равными, причем при всех $\Delta \gamma_k = 0$, т. е. в середине полосы пропускания фильтра, коэффициент пропускания должен быть равен единице. Это значит, что в случае параллельно ориентированных входного и выходного поляризаторов должно быть

$$\cos^2 \theta_{0,N+1} = 1,$$
 (51)

а в случае скрещенных поляризаторов

$$\sin^2 \theta_{0,N+1} = 1.$$
 (52)

Отсюда следует, что $\sin 2\theta_{0, N+1} = 0$ и $\cos 2\theta_{0, N+1} = \pm 1$, где верхний знак соответствует первому, а нижний — второму случаю. Следовательно, согласно формуле (40),

$$\sin 2\theta_{l,N+1} = \mp \sin 2\theta_{0l}. \tag{53}$$

Кроме того, сделаем во всех членах формул (49) и (50), начиная с членов четвертого порядка (т. е. при $n \ge 2$), приближенную подстановку

 $\cos 2\theta_{lm} = \cos 2\theta_{0l} \cos 2\theta_{0m} + \sin 2\theta_{0l} \sin 2\theta_{0m} \approx \sin 2\theta_{0l} \sin 2\theta_{0m}.$ (54)

Обе формулы примут тогда одинаковый вид. Именно, для $F_{11}F_{11}^*$ имеем:

$$F_{11}F_{11}^* \approx \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n}2^{2n-1}}{(2n)!} \left(\sum_{k=1}^{N} \sin 2\theta_{0k} \Delta \gamma_k\right)^{2n}.$$
 (55)

Этот ряд является разложением квадрата косинуса, так что окончательно

$$F_{11}F_{11}^* \approx \cos^2\left(\sum_{k=1}^N \sin 2\theta_{0k} \Delta \gamma_k\right). \tag{56}$$

Для $F_{21}F_{21}^*$ получается совершенно такая же формула, только, конечно, в ней величины $2\theta_{0k}$ будут иные в соответствии с различием формул (51) и (52).

Формула (56) является нашим главным результатом. Она может найти двоякое применение. Во-первых, она дает приближенный ход спектральной кривой пропускания фильтра. Так как все пластинки фильтра типа Шольца имеют одинаковую толщину, то все $\Delta \gamma_k$ равны. Примером могут послужить два синтезированных в [²] фильтра. Для первого из них (с f = 1/3) приближенная формула получается в виде (одинаковом во всех четырех вариантах)

$$F_{21}F_{21}^{\bullet} = \cos^2(4, 140\Delta \gamma), \tag{57}$$

а для второго (с f = 0,4) — в виде

340

На рисунке показаны точная и приближенная спектральные кривые для первого фильтра. Для второго картина сходна. Видим, что в области главного максимума пропускания получается хорошее совпадение. Наоборот, вне полосы пропускания, т. е. в области побочных максимумов, приближенная формула становится совершенно непригодной.

Другое применение формула (56) может найти при исследовании влияния наклонности падения света на фильтр. Если угол падения отличен от нуля, но мал, то толщины пластинок заменяются некоторыми эффективными значениями, мало отличающимися от первоначальных. Все Дук тогда различны. Формула (56) позволяет выполнять быструю оценку влияния этих отклонений. При этом следует, однако, учитывать также обусловленное наклонностью падения эффективное изменение азимутов.

ЛИТЕРАТУРА

Кард П., Изв. АН ЭССР, Физ. Матем., 25, № 4, 359—365 (1976).
 Кард П., Ихер Х., Изв. АН ЭССР, Физ. Матем., 26, № 1, 13—27 (1977).
 Кард П. Г., Анализ и синтез многослойных интерференционных пленок, Таллин, «Валгус», 1971.

Тартуский государственный университет

Поступила в редакцию 8/VI 1981

F. KARD

INTERFERENTS-POLARISATSIOONVALGUSFILTRITE TEOORIA POHIVALEMID

Maatriks F, mis teisendab interferents-polarisatioonfiltrile langeva valguse polarisatsioonimaatriksi iiltri läbinud valguse polarisatsioonimaatriksiks, avaldub valemitega (13) või (26). Nendes esinevad maatriksid Φ ja Γ (s.o. Φ ja Γ , kui s on paaris, ja $\overline{\Phi}$ ja $\overline{\Gamma}$, kui s on paaritu) on määratud valemitega (6)—(9), kus φ on kaksikmurdva plaadi asimuut ja γ on valemi (10) järgi plaadi paksusega h võrdeline suurus (λ on lainepikkus, n_o hariliku ja n_e ebahariliku kiire murdumisnäitaja). Valemis (13) on $s=0, 1, \ldots, N$ (N on plaatide arv) ja summa võetakse üle kõigi kombinatsioonide k_1, k_2, \ldots, k_s , kusjuures $1 \leq k_1 < k_2 < \ldots < k_s \leq N$ ja $l \neq k$. Valemis (26), kus $\varphi_{k,k+1}$ on valemitega (17) ja (19) defineeritud suurused, x on kas sin või cos; summa võetakse üle kõigi siinuste ja koosinuste kombinatsioonide; $s=0, 1, \ldots, N+1$ on siinuste arv cosl kombinatsioonis; arvud $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$ on +1 või -1 nõnda, et $x \varphi_{k,k+1} =$ Qh.k+1 sin korral on $e_{h}e_{h+1}=\pm 1$, kus $e_{0}=1$. Filtri läbilaskvustegurid $F_{11}F_{11}$ (sisend- ja väljundpolarisaatori paralleelorientatsiooni korral) või $F_{21}F_{21}^*$ (polarisaatorite ristuvate orientat-sioonide korral) avalduvad ridadena (49) ja (50), kus $\Delta \gamma_k$ on määratud valemitega (33) ja (34); $\Theta_{0,N+1}$ on määratud valemiga (36), kus N_1 ja N_3 on plaatide arvud, millel r=1 või r=3, ning $m_1, m_2, \ldots, m_{N_1+N_3}$ nende plaatide indeksid; Θ_{k_1} on mää-ratud valemiga (39), Θ_{0h} ja $\Theta_{l,N+1}$ aga järgmiselt: Θ_{0h} sisaldab kõik need $\Theta_{0,N+1}$ liikmed, mille indeks on väiksem kui k, ja liikme $\pm \varphi_k$; $\Theta_{l,N+1}$ sisaldab kõik need $\Theta_{0,N+1}$ liikmed, mille indeks on suurem kui l, ja liikme $\pm \varphi_l$; mõlema suuruse liikmete märgid vahelduvad. Kitsa läbilaskvusribaga filtri puhul summeerub $F_{11}F_{11}^{*}$ avaldis (49) ligikaudu valemiks (56); samasuguse kuju saab ka $F_{21}F_{21}^{\bullet}$ avaldis (50), ent esimesel juhul kehtib valem (51), teisel juhul (52). Valem (56) kehtib suure täpsusega läbilaskeriba kohal (vt. joon.), ent väljaspool seda ei kehti.

P. KARD

BASIC THEORETICAL FORMULAE FOR THE BIREFRINGENT CHAIN LIGHT-FILTERS

The formulae (13) and (26) are the two different forms of the matrix F, which transforms the polarization matrix of the light, passing a birefringent chain light-filter.

implies $\varepsilon_{h}\varepsilon_{h+1}=\pm 1$ and $\varepsilon_{0}=1$. The transmittance $F_{11}F_{11}^{*}$ of the filter (when in- and

output polarizers are parallel) or $F_{21}F_{21}^*$ (when polarizers are crossed) are expanded into the series (49) and (50), where $\Delta \gamma_k$'s are defined by the formulae (33) and (34); $\Theta_{0,N+1}$ is defined by the formula (36), where N_1 and N_3 are the numbers of plates having r=1 or r=3, and $m_1, m_2, \ldots, m_{N_1+N_3}$ are their indices; Θ_{0k} and $\Theta_{l,N+1}$ are defined as follows: Θ_{0k} includes all terms of $\Theta_{0,N+1}$, whose indices are smaller than k, and the term $\pm \varphi_k$; $\Theta_{l,N+1}$ includes all terms of $\Theta_{0,N+1}$, whose indices are greater than l, and the term $\pm \varphi_l$; the signs of terms of both quantities are alternating. Finally, Θ_{kl} is defined by the formula (39). In the case of narrow pass-band filter, when the condition (51) holds, the expansion (49) can approximately be summed up to the formula (56). The form-identical expression holds also for $F_{21}F_{21}^*$, but instead of (51) the condition (52) must be used. The approximation (56) fits quite well inside the pass-band (s. fig.), but outside the pass-band is totally wrong.

342