LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE FÜÜSIKA * MATEMAATIKA. 1979, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСГОНСКОЙ ССР. ТОМ 28 ФИЗИКА * МАТЕМАТИКА. 1979, № 4

https://doi.org/10.3176/phys.math.1979.4.11

Р. ЗАРИПОВ

УДК 530.12

О ЗАКОНЕ СЛОЖЕНИЯ ПАРАЛЛЕЛЬНЫХ СКОРОСТЕЙ В РЕЛЯТИВИСТСКОЙ И КЛАССИЧЕСКОЙ МЕХАНИКЕ

R. ZARIPOV. PARALLEELSETE KIIRUSTE LIITMISE SEADUSEST RELATIVISTLIKUS JA KLASSIKALISES MEHAANIKAS

R. ZARIPOV. ON THE LAW OF ADDITION OF PARALLEL VELOCITIES IN RELATIVISTIC AND CLASSICAL MECHANICS

(Представлена П. Кардом)

Известно, что в предельном случае $c \to \infty$ (c — средняя скорость света в вакууме вдоль замкнутого пути) релятивистский закон сложения скоростей [¹] переходит в соответствующий закон классической механики. Несмотря на правильность конечного результата, некоторые авторы [^{2, 3}] указывают на формальный характер такого перехода. Поэтому возникает вопрос корректного соотношения между законами сложения скоростей в релятивистской и классической механике.

Следуя работе [4], сопоставим 4-вектор $X := (ix_0, \mathbf{x})$ (где $x_0 = ct$, $\mathbf{x} = x, y, z$) пространства Минковского 1R_3 кватерниону $X := ix_0 + \mathbf{x}$. При этом рассмотрим кватернионы, векторная часть которых имеет координаты (x, 0, 0). Тогда прямые и обратные преобразования 2-векторов между инерциальными системами отсчетов K_{α} и K_{β} взаимно отображаются преобразованиями между сопоставляемыми кватернионами

 $X_{\alpha} = L_{\alpha\beta}X_{\beta}, \quad X_{\beta} = L_{\beta\alpha}X_{\alpha}, \quad X_{\alpha} = ix_{\alpha0} + ex_{\alpha}, \quad L_{\alpha\beta} = a_{\alpha\beta} + eb_{\alpha\beta}$ (1)

или между их сопряженными величинами

 $\overline{X}_{\alpha} = \overline{X}_{\beta} \overline{L}_{\alpha\beta}, \quad \overline{X}_{\beta} = \overline{X}_{\alpha} \overline{L}_{\beta\alpha}, \quad \overline{X}_{\alpha} = i x_{\alpha 0} - e x_{\alpha}, \quad \overline{L}_{\alpha\beta} = a_{\alpha\beta} - e b_{\alpha\beta}, \quad (2)$

оставляя норму кватернионов инвариантной

$$X_{\alpha}\overline{X}_{\alpha} = X_{\beta}\overline{X}_{\beta} \qquad (-x_{\alpha 0}^{2} + x_{\alpha}^{2} = -x_{\beta 0} + x_{\beta}^{2}, \ e^{2} = -1).$$
(3)

Из соотношений (1)—(3) вытекают следующие свойства бикватерниона $L_{\alpha\beta}$:

1)
$$\bar{L}_{\alpha\beta} = L_{\beta\alpha} (a_{\alpha\beta} = a_{\beta\alpha}, b_{\alpha\beta} = -b_{\beta\alpha}),$$
 (4)

2) $L_{\alpha\beta} = X_{\alpha} \overline{X}_{\beta} / (X_{\beta} \overline{X}_{\beta}),$

из которых можно получить равенства

$$L_{\alpha\beta}L_{\beta\alpha}=1, \tag{5a}$$

$$L_{\alpha\beta}L_{\beta\gamma}L_{\gamma\alpha}=1, \tag{56}$$

$$L_{\alpha\beta}L_{\beta\gamma}\dots L_{\delta n}L_{n\alpha}=1 \tag{5c}$$

и явный вид $L_{\alpha\beta}$:

$$L_{\alpha\beta} = \left(1 + e \frac{i v_{\alpha\beta}}{c}\right) / \left(1 + \frac{v_{\alpha\beta} v_{\beta\alpha}}{c^2}\right)^{1/2} (v_{\alpha\beta} = b_{\alpha\beta}/a_{\alpha\beta}, v_{\alpha\beta} = -v_{\beta\alpha}).$$
(6)

Здесь относительная скорость $v_{\alpha\beta}$ между K_{α} и K_{β} связана со скоростями $v_{\alpha} = c x_{\alpha} / x_{\alpha 0}$ и $v_{\beta} = c x_{\beta} / x_{\beta 0}$, согласно (1) и (3), соотношениями

$$v_{\alpha\beta} + v_{\beta} - v_{\alpha} - (v_{\alpha}v_{\alpha\beta}v_{\beta})/c^{2} \equiv 0,$$

$$1 - \frac{v_{\alpha}v_{\beta} + v_{\beta}v_{\beta\alpha} + v_{\alpha}v_{\alpha\beta}}{c^{2}} \equiv$$

$$= \left[\left(1 - \frac{v_{\alpha}v_{\alpha}}{c^{2}}\right) \left(1 + \frac{v_{\alpha\beta}v_{\beta\alpha}}{c^{2}}\right) \left(1 - \frac{v_{\beta}v_{\beta}}{c^{2}}\right) \right]^{l_{e}}.$$
(8)

Наконец, учитывая равенство (5с), запишем общую формулу для связи относительных скоростей в случае любого числа *n* инерциальных систем отсчетов:

$$\frac{\left(1+e\frac{i\upsilon_{\alpha\beta}}{c}\right)\left(1+e\frac{i\upsilon_{\beta\gamma}}{c}\right)\dots\left(1+e\frac{i\upsilon_{\delta n}}{c}\right)\left(1+e\frac{i\upsilon_{n\alpha}}{c}\right)}{\left[\left(1+\frac{\upsilon_{\alpha\beta}\upsilon_{\beta\alpha}}{c^2}\right)\left(1+\frac{\upsilon_{\beta\gamma}\upsilon_{\gamma\beta}}{c^2}\right)\dots\left(1+\frac{\upsilon_{\delta n}\upsilon_{n\delta}}{c^2}\right)\left(1+\frac{\upsilon_{n\alpha}\upsilon_{\alpha n}}{c^2}\right)\right]^{l_{\alpha}}}=1.$$
 (9)

Раскрывая соотношение (9), получим следующие законы сложения относительных скоростей:

$$(v_{\alpha\beta}+v_{\beta\gamma}+\ldots+v_{\delta n}+v_{n\alpha})+(1/c^{2})(v_{\alpha\beta}v_{\beta\gamma}v_{\gamma\sigma}+\ldots+v_{\xi\delta}v_{\delta n}v_{n\alpha})+ (1/c^{4})(v_{\alpha\beta}v_{\beta\gamma}v_{\gamma\sigma}v_{\sigma\xi}v_{\xi\delta}+\ldots+v_{\eta r}v_{r\xi}v_{\xi\delta}v_{\delta n}v_{n\alpha})+\ldots=0,$$

$$(10)$$

$$+\frac{1}{c^{2}}(v_{\alpha\beta}v_{\beta\gamma}+\ldots+v_{\delta n}v_{n\alpha})+\frac{1}{c^{4}}(v_{\alpha\beta}v_{\beta\gamma}v_{\gamma\sigma}v_{\sigma\xi}+\ldots+v_{r\xi}v_{\xi\delta}v_{\delta n}v_{n\alpha})+ (1)$$

$$+\ldots=\left[\left(1+\frac{v_{\alpha\beta}v_{\beta\alpha}}{c^{2}}\right)\left(1+\frac{v_{\beta\gamma}v_{\gamma\beta}}{c^{2}}\right)\ldots\left(1+\frac{v_{\delta n}v_{n\delta}}{c^{2}}\right)\left(1+\frac{v_{n\alpha}v_{\alpha n}}{c^{2}}\right)\right]^{1/2}$$

где в скобках указаны суммы соответствующих произведений скоростей. В частности, для трех инерциальных систем отсчетов ($\alpha = 1, \beta = 2, \gamma = 3$) из (10) и (11) имеем

$$(v_{12}+v_{23}+v_{31})+(1/c^2)(v_{12}v_{23}v_{31})=0,$$
(12)

$$1 + \frac{1}{c^2} (v_{12}v_{23} + v_{31}v_{12} + v_{23}v_{31}) =$$

$$= \left[\left(1 + \frac{v_{12}v_{21}}{c^2} \right) \left(1 + \frac{v_{23}v_{32}}{c^2} \right) \left(1 + \frac{v_{31}v_{13}}{c^2} \right) \right]^{1/2} .$$
⁽¹³⁾

Формула (12) была приведена в работе [5].

Если преобразования 2-векторов между К_а и К_в для классической механики взаимно отобразить преобразованиями между сопоставляемыми им дуальными числами

$$X_{\alpha} = L_{\alpha\beta}X_{\beta}, \quad X_{\beta} = L_{\beta\alpha}X_{\alpha}, \quad X_{\alpha} = ix_{\alpha0} + \varepsilon x_{\alpha}, \quad L_{\alpha\beta} = a_{\alpha\beta} + \varepsilon b_{\alpha\beta} \quad (\varepsilon^2 = 0) \quad (14)$$

и произвести вычисления, аналогичные приведенным выше, то можно получить соотношения

$$t_{\alpha}^{2} = t_{\beta}^{2}, \quad L_{\alpha\beta} = 1 + \varepsilon (i v_{\alpha\beta}/c)$$
 (15)

и закон сложения скоростей в виде

$$v_{\alpha\beta} + v_{\beta} - v_{\alpha} = 0, \tag{16}$$

$$v_{\alpha\beta} + v_{\beta\gamma} + \dots + v_{n\alpha} = 0. \tag{17}$$

Таким образом, соответствие между 2-векторами классической механики и дуальными числами позволяет избежать применения предельного перехода $c \to \infty$ в формулах (7), (8), (10) и (11).

В заключение выпишем еще одно выражение для связи скоростей. в релятивистской

$$\upsilon_{\alpha\beta}\upsilon_{\gamma} + \upsilon_{\beta\gamma}\upsilon_{\alpha} + \upsilon_{\gamma\alpha}\upsilon_{\beta} = (\upsilon_{\alpha\beta} + \upsilon_{\beta\gamma} + \upsilon_{\gamma\alpha})(\upsilon_{\alpha}\upsilon_{\beta}\upsilon_{\gamma}/c^{2})$$
(18)

и классической механике

$$v_{\alpha\beta}v_{\gamma} + v_{\beta\gamma}v_{\alpha} + v_{\gamma\alpha}v_{\beta} = 0.$$
⁽¹⁹⁾

ЛИТЕРАТУРА

- Эйнштейн А., Собрание научных трудов, т. 1, М., «Наука», 1965, с. 7—35.
 Бунге М., Философия физики, М., «Прогресс», 1975.
 Кард П., Изв. АН ЭССР, Физ. Матем., 25, № 1, 15—22 (1976).
 Богуш А. А., Курочкин Ю. А., Федоров Ф. И., Докл. АН СССР, 236, № 1, 58—60 (1977).
 Раlmer, L. H., Amer. J. Phys., 44, № 7, 702 (1976).

Казанский физико-технический институт Академии наук СССР

Поступила в редакцию 4/IV 1979