EESTI NSV TEADUSTE AKADEEMIA TÕIMETISED. 28. KÕIDE FÜÜSIKA * MATEMAATIKA. 1979, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ФИЗИКА * МАТЕМАТИКА. 1979, № 4

В. СИНИВЕЭ

УДК 539.28

ГРУППОВОЙ ПОДХОД В ДИНАМИКЕ МНОГОСПИНОВЫХ СИСТЕМ. VIII

(Представлена Э. Липпмаа)

В настоящей статье мы продолжаем начатое в [1] изучение соответствия между динамикой абстрактной трехуровневой системы [2] и динамикой ядерного спина 1. Здесь рассмотрены физические условия, при выполнении которых интерпретация абстрактной динамики возможна, в основном, путем применения представления группы **O**(3) в пространстве эрмитовых операторов. Сюда относятся как чистый ядерный резонанс, так и чистый ядерный квадруполный резонанс.

11.3. Геометрическая интерпретация классических и квантовых величин. До сих пор классические поля (11.15), (11.18) и средние ядерные моменты (11.29), (11.30) описывались в виде векторов пространства $\mathbf{V} \times \mathbf{V}$. В целях лучшего сопоставления теории с экспериментальными условиями желательно иметь для тех же величин более наглядные образы в обыкновенном векторном пространстве \mathbf{V} . Поскольку величины (11.15), (11.29) уже есть векторы пространстве \mathbf{V} . пороблема сводится к описанию тензоров (11.18), (11.30) с помощью их осей и главных значений. Ниже такая т. н. геометрическая интерпретация формулируется как для классических, так и для квантовых величин.

Вращение лабораторного репера (11.9) приводит к новому реперу $\vec{e}_{j}(\psi, \vartheta, \varphi)$ (j = x, y, z), пространственная ориентация которого задана эйлеровыми углами ψ , ϑ , φ . Мультипликативное разложение оператора вращения

$$\Omega(\psi, \vartheta, \varphi) = \Omega(a_z, \psi) \Omega(a_y, \vartheta) \Omega(a_z, \varphi)$$
(11.50)

объясняет принятый в данной статье выбор эйлеровых углов. Следует только иметь в виду, что (например) оператор $\Omega(\vec{a}_y, \vartheta)$ совершает правое вращение вокруг \vec{a}_y на угол ϑ .

Пользуясь матричными элементами $\Omega_{mj}(\psi, \vartheta, \varphi)$ (j, m = x, y, z) оператора $\Omega(\psi, \vartheta, \varphi)$, запишем уравнение (11.9) в развернутом виде:

$$\vec{e}_{j}(\psi,\vartheta,\varphi) = \sum_{m} \Omega_{mj}(\psi,\vartheta,\varphi) \vec{a}_{m}.$$
(11.51)

Как известно [^{3,4}], представление вращения (11.51) в тензорном пространстве V × V имеет вид прямого произведения

$$\mathbf{e}_{jk}(\psi,\vartheta,\varphi) = \sum_{m} \sum_{n} \Omega_{mj}(\psi,\vartheta,\varphi) \,\Omega_{nk}(\psi,\vartheta,\varphi) \,\mathbf{a}_{mn}. \tag{11.52}$$

Ортогональное преобразование (11.52) неприводимых базисных тензоров (11.6) запишем так:

$$\mathbf{e}_{q}^{(l)}(\psi,\vartheta,\varphi) = \sum_{p} R_{pq}^{(l)}(\psi,\vartheta,\varphi) \, \mathbf{a}_{p}^{(l)}. \tag{11.53}$$

Входящие в преобразование (11.53) функции $R_{pq}^{(l)}(\psi, \vartheta, \varphi)$ являются аналогами матричных элементов Вигнера [³] и обобщенных сферических функций [⁴] в области действительных неприводимых тензоров. Явные выражения этих функций получаются подстановкой функций $\Omega_{mj}(\psi, \vartheta, \varphi)$ в соотношения, связывающие приводимые и неприводимые базисные тензоры. Часть рассчитанных таким путем функций $R_{pq}^{(2)}(\psi, \vartheta, \varphi)$ приведена в таблице. Функции $R_{pq}^{(1)}(\psi, \vartheta, \varphi)$ совпадают с функциями $\Omega_{pq}(\psi, \vartheta, \varphi)$.

Обозначение	Явное выражение	
$R_{00}^{(2)}$	$(1/2) (3 \cos^2 \vartheta - 1)$	
$R_{10}^{(2)}$	$(1/2)\sin^2 \theta \cos 2\psi$	
$R_{20}^{(2)}$	$(1/2)\sin^2\vartheta\sin 2\psi$	
$R_{30}^{(2)}$	(1/2) sin 2θ cos ψ	
$R_{40}^{(2)}$	(1/2) sin 2ϑ sin ψ	
R ₀₁ ⁽²⁾	(3/2) sin ² ϑ cos 2φ	
$R_{11}^{(2)}$	$(1/2)(1+\cos^2\vartheta)\cos 2\psi\cos 2\varphi - \cos\vartheta\sin 2\psi\sin 2\varphi$	
$R_{21}^{(2)}$	$(1/2)(1+\cos^2\vartheta)\sin 2\psi\cos 2\varphi+\cos\vartheta\cos 2\psi\sin 2\varphi$	
$R_{31}^{(2)}$	$-(1/2)\sin 2\vartheta \cos \psi \cos 2\varphi + \sin \vartheta \sin \psi \sin 2\varphi$	
$R_{41}^{(2)}$	$-(1/2)\sin 2\vartheta \sin \psi \cos 2\varphi - \sin \vartheta \cos \psi \sin 2\varphi$	int.

Функции $R_{p0}^{(2)}(\psi, \vartheta)$ и $R_{p1}^{(2)}(\psi, \vartheta, \varphi)$, входящие в преобразование (11.53)

В пространстве С вращение (11.50) представлено унитарным оператором

$$T(\Omega) = \exp\left(-i\psi I_z\right) \exp\left(-i\vartheta I_y\right) \exp\left(-i\varphi I_z\right).$$
(11.54)

Ортогональное супероператорное представление $\mathfrak{T}(\Omega)$ оператора (11.54) производит в пространстве **H** преобразование *I*-базиса

$$I_q^{(l)}(\psi,\vartheta,\varphi) = \mathfrak{T}(\Omega)I_q^{(l)} = \sum_p R_{pq}^{(l)}(\psi,\vartheta,\varphi)I_p^{(l)}.$$
(11.55)

Исходя из специального тензора (11.18), имеющего оси a_j и главные значения U_{jj} (j = x, y, z), и совершая поворот (11.51) осей этого тензора, получим новый тензор

$$\mathbf{U} = \sum_{j} U_{jj} \mathbf{e}_{jj} (\psi, \vartheta, \varphi), \qquad (11.56)$$

обладающий теми же главными значениями, но иными осями е_j (ψ, ϑ, φ).

Представление тензора (11.56) с помощью неприводимых базисных тензоров (11.53)

326

$$\mathbf{U} = (1/2) U_{zz} [3\mathbf{e}_{0}^{(2)}(\psi, \vartheta) + \eta \mathbf{e}_{1}^{(2)}(\psi, \vartheta, \varphi)], \qquad (11.57)$$

где

$$\eta = (U_{xx} - U_{yy}) / U_{zz}, \tag{11.58}$$

содержит только два базисных тензора $\mathbf{e}_q^{(2)}$. Относительно базиса $\mathbf{a}_q^{(l)}$ тензор (11.57) принимает вид (11.18), где

$$U_{q}^{(2)} = (1/2) U_{zz} [3R_{q0}^{(2)}(\psi, \vartheta) + \eta R_{q1}^{(2)}(\psi, \vartheta, \varphi)].$$
(11.59)

Итак, каждый тензор (11.18) характеризуется: 1) двумя числами U_{zz} , η ; 2) ориентацией (ψ , ϑ , φ) своих осей. Если неоднородное электрическое поле (11.16) создано зарядами ядер и электронного облака моно-

кристалла, то положение осей $e_j(\psi, \vartheta, \varphi)$ зафиксировано относительно кристалла. В этом случае углы $(\psi, \vartheta, \varphi)$ определяют ориентацию моно-

кристалла относительно лабораторного репера а_j.

Временная зависимость тензора (11.18) может быть обусловлена как колебаниями $U_{zz}(t)$, $\eta(t)$, так и вращением $\psi(t)$, $\vartheta(t)$, $\varphi(t)$. Такая модуляция внутрикристаллического электрического поля возникает, например, при вращении монокристалла, при прохождении ультразвуковой волны через кристалл и т. д.

Гамильтониан (11.46), отвечающий магнитному полю B = Bn и тензору электрического поля (11.57), принимает на базисе (11.55) следующий «геометрический» образ:

$$H_{T} = -\omega_{n}I_{n} + (1/4)\,\omega_{Q}\{3I_{0}^{(2)}(\psi,\,\vartheta) + \eta I_{1}^{(2)}(\psi,\,\vartheta,\,\varphi)\},\qquad(11.60)$$

где

 $\omega_n = \gamma B$,

а ω_Q задается формулой (11.37). В разложении (11.46) гамильтониана (11.60) относительно *I*-базиса имеем

$$\omega_{q}^{(2)} = (1/4) \,\omega_{Q} \left[3R_{q0}^{(2)}(\psi, \vartheta) + \eta R_{q1}^{(2)}(\psi, \vartheta, \varphi) \right]. \tag{11.61}$$

Стало быть, геометрический образ гамильтониана (11.60) отличается от образа пары \vec{B} , U только числовыми множителями γ , $eQ/2\hbar$. В обыкновенном векторном пространстве V зеемановская часть (11.24) представлена вектором, а квадрупольная компонента (11.25) — неприводимым тензором второго порядка.

Оператор плотности любого состояния спинового ансамбля может быть разложен аналогично гамильтониану (11.60):

$$\varrho_T = (1/6) I^2 + \varrho_n^{(1)} I_n + \varrho_0^{(2)} I_0^{(2)}(\psi, \vartheta) + \varrho_1^{(2)} I_1^{(2)}(\psi, \vartheta, \varphi).$$
(11.62)

Относительно *І*-базиса оператор (11.62) задается выражением (11.28), в котором

$$\varrho_{q}^{(2)}(\psi,\vartheta,\varphi) = R_{q0}^{(2)}(\psi,\vartheta)\varrho_{0}^{(2)} + R_{q1}^{(2)}(\psi,\vartheta,\varphi)\varrho_{1}^{(2)}.$$
(11.63)

Состоянию (11.62) соответствуют средние ядерные моменты

$$M = \langle M_n \rangle n, \tag{11.64}$$

$$e\mathbf{Q} = \langle eQ_{0}^{(2)} \rangle \mathbf{e}_{0}^{(2)}(\psi, \vartheta) + \langle eQ_{4}^{(2)} \rangle \mathbf{e}_{4}^{(2)}(\psi, \vartheta, \varphi), \qquad (11.65)$$

где

В. Синивеэ

$$\langle M_n \rangle = 2\gamma \hbar \varrho_n^{(1)}, \qquad (11.66)$$

$$eQ_{a}^{(2)} = 2eQ\varrho_{a}^{(2)}.$$
 (11.67)

Разложение тензора (11.65) относительно базиса $\mathbf{a}_q^{(l)}$ задается выражением (11.30), в котором

$$\langle eQ_{q}^{(2)}(\psi,\vartheta,\varphi)\rangle = R_{q0}^{(2)}(\psi,\vartheta) \langle Q_{\vartheta}^{(2)} \rangle + R_{q1}^{(2)}(\psi,\vartheta,\varphi) \langle Q_{4}^{(2)} \rangle.$$
(11.68)

Итак, оператор плотности (11.62) тоже состоит из векторной и тензорной компонент, определяющих средний магнитный момент (11.64) и средмий квадрупольный момент (11.65) соответственно.

11.4. Классификация спиновых систем. Физическая интерпретация некоторой абстрактной динамики (11.44), (11.45) предполагает выбор преобразования (11.40). В общем случае ортогональное преобразование \mathfrak{T} , соответствующее унитарному оператору *T*, следует брать в виде разложения

$$\mathfrak{T} = \mathfrak{T}_{23}(\varphi_{23}, \sigma_{23}) \mathfrak{T}_{12}(\varphi_{12}, \sigma_{12}) \mathfrak{T}_{13}(\varphi_{13}, \sigma_{13}). \tag{11.69}$$

Шесть параметров Мойнихена [²] описывают унитарную орнентацию оператора H_T в пространстве С. Тому же гамильтониану можно дать геометрическую интерпретацию (11.60). Обсудим эти два способа описания.

В тех случаях, когда \mathfrak{T} допускает простую геометрическую интерпретацию, полезно видоизменять формулы (11.48), (11.49), описывающие переход от абстрактной к спиновой динамике.

Пусть

$$I_{a}^{(l)}(T) = \mathfrak{T}_{a}^{(l)}, \qquad (11.70)$$

тогда

$$W_{mn}(T) = \sum_{l} \sum_{q} \mathfrak{L}_{lq,mn} I_{q}^{(l)}(T). \qquad (11.71)$$

Подстановка операторов (11.71) в уравнения абстрактной динамики (11.44), (11.45) приводит к выражениям

$$H_T(t) = \sum_{l} \sum_{q} \omega_q^{(l)}(t) I_q^{(l)}(T), \qquad (11.72)$$

$$\varrho_{T}(t) = \sum_{l} \sum_{q} \varrho_{q}^{(l)}(t) I_{q}^{(l)}(T), \qquad (11.73)$$

где

$$\omega_q^{(l)}(t) = \sum_{m < n} \sum_{m < n} \mathfrak{L}_{lq,mn} \omega_{mn}(t), \qquad (11.74)$$

$$\varrho_q^{(l)}(t) = \sum_{m < n} \mathfrak{L}_{lq,mn} \varrho_{mn}(t). \qquad (11.75)$$

Разложения (11.72), (11.73) особенно полезны в том случае, когда $\mathfrak{T} = \mathfrak{T}(\Omega)$. Тогда $I_q^{(b)}(T) = I_q^{(l)}(\psi, \vartheta, \varphi)$ и формулы (11.74), (11.75) описывают переход от абстрактной к спиновой динамике, имеющей непосредственно геометрическую форму, приспособленную к выбранному статическому гамильтониану H_T (см. п. 10.3).

Равенство $\mathfrak{T} = \mathfrak{T}(\Omega)$ имеет место в случае чистого магнитного резонанса, когда $H_T \Subset \mathbf{G}_Z^0$, но оно верно и для аксиально-симметрического

электрического поля, имеющего ось симметрии вдоль $e_z(\psi, \vartheta)$. Разумеется, и в данном случае возбуждение $H_E(t)$ непосредственно не может быть представлено в виде вращающихся компонент $H_{EZ}(t)$ и $H_{EQ}(t)$. Однако это легко сделать, пользуясь соображениями, развитыми в п. 10.3.

Рассмотрим случай

$$\mathfrak{T} = \mathfrak{T}_{13}(\varphi_{13}, 0).$$
 (11.76)

Представив преобразование (11.70) с помощью сокращенной записи [²], получим

 $I_{z} \xrightarrow{\varphi_{13}} I_{1}^{(2)},$ $I_{x} \xleftarrow{\varphi_{13}} I_{3}^{(2)},$ $I_{y} \xrightarrow{\varphi_{13}} I_{4}^{(2)}.$ (11.77)

При этом базисные операторы $I_0^{(2)}$, $I_1^{(2)}$ остаются неизменными.

Преобразования (11.76) генерируют гамильтонианы следующего вида:

$$H_T = -\sqrt{(\omega_z)^2 + (\frac{1}{4}\eta\omega_Q)^2} I_z(T) + \frac{3}{4}\omega_Q I_0^{(2)}.$$
 (11.78)

Расчет их собственных значений ω_m^0 прост. Если же ω_m^0 считать известными, то

$$\omega_{Q} = 2 \left(\omega_{12}^{0} - \omega_{23}^{0} \right) / 3,$$

$$-\omega_{z} = \omega_{13}^{0} \cos 2\varphi_{13} / 2,$$

$$\eta = 3 \omega_{13}^{0} \sin 2\varphi_{13} / \left(\omega_{12}^{0} - \omega_{23}^{0} \right). \qquad (11.79)$$

Разлагая оператор (11.78) на І-базисе, имеем

$$H_T = -\omega_z I_z + (1/4) \,\omega_Q \,(3I_0^{(2)} + \eta I_1^{(2)}). \tag{11.80}$$

Очевидно, гамильтониан (11.80) соответствует постоянным полям (11.38) и

$$\mathbf{U}_{0} = (1/2) U_{zz} (3\mathbf{a}_{0}^{(2)} + \eta \mathbf{a}_{1}^{(2)}). \tag{11.81}$$

Итак, преобразование (11.76) приводит к появлению асимметрии тен-

зора электрического поля, сохраняя его оси а_j неизменными.

Сравнение геометрических форм специального гамильтониана (11.80) и произвольного (11.60) показывает, что переход от специального преобразования (11.76) к общему (11.69) означает изменение пространст-

венной ориентации обоих полей B_0 , U_0 . Преобразование $\mathfrak{T}(\Omega)$ может менять только общую ориентацию этих полей (в пространстве V), а общее преобразование (11.69) допускает изменение и их взаимной ориентации.

11.5. Чистый квадрупольный резонанс. Рассмотрим системы, генерируемые преобразованием (11.69) следующего вида: В. Синивеэ

$$\mathfrak{T} = \mathfrak{T}(\Omega) \mathfrak{T}_{13}(\pi/4, 0). \tag{11.82}$$

Согласно (11.77), супероператор $\mathfrak{I}_{13}(\pi/4, 0)$ переводит H_0 в специальный гамильтониан (11.80), у которого $\omega_z = 0$. Под действием супероператора $\mathfrak{I}(\Omega)$ этот гамильтониан переходит в

$$H_T = (1/4) \omega_Q \{ 3I_0^{(2)}(\psi, \vartheta) + \eta I_1^{(2)}(\psi, \vartheta, \varphi) \}.$$
(11.83)

Эксперименты с системами, имеющими статический гамильтониан (11.83), принято причислять к чистому квадрупольному резонансу. Обычно имеется в виду, что полный гамильтониан

$$H_T(t) = H_T + H_E(t) \tag{11.84}$$

включает в себя только зеемановское возбуждение $H_E(t) = H_{EZ}(t)$. Однако ниже нами допускается и произвольное $H_E(t)$.

Гамильтониан (11.83) соответствует постоянному электрическому полю, описываемому тензором (11.57). Расчет величин ω_Q , η по заданным уровням энергии ω_m^0 по-прежнему следует производить по формулам (11.79), учитывая, однако, что в данном случае $\varphi_{13} = \pi/4$.

Зависимость уровней ω_m^0 гамильтониана (11.83) от величин ω_Q , следующая:

Преобразование (11.82) имеет ту особенность, что каждый $W_{mn}(T)$, рассчитанный по (11.71), пропорционален некоторому $I_q^{(l)}(\psi, \vartheta, \varphi)$. Это обстоятельство позволяет утверждать: в случае статического гамильтониана (11.83) абстрактной динамике (11.44), (11.45) соответствует спиновая динамика

$$H_T(t) = \sum_l \sum_q \omega_q^{(l)}(t) I_q^{(l)}(\psi, \vartheta, \varphi), \qquad (11.86)$$

$$\varrho_T(t) = \sum_l \sum_q \varrho_q^{(l)}(t) I_q^{(l)}(\psi, \vartheta, \varphi), \qquad (11.87)$$

где

$$\begin{split} \omega_{z}^{(1)}(t) &= -(1/2) \,\omega_{13}^{x}(t) \,, \\ \omega_{x}^{(0)}(t) &= (1/2) \,\omega_{12}^{x}(t) \,, \\ \omega_{y}^{(0)}(t) &= (1/2) \,\omega_{12}^{y}(t) \,, \end{split}$$
(11.88)

И

$$\begin{aligned} & \overset{22}{}_{0}(t) = \omega_{13}^{Q}(t), \\ & \overset{22}{}_{1}(t) = (1/2) \, \omega_{13}^{z}(t), \\ & \overset{22}{}_{2}(t) = (1/2) \, \omega_{13}^{y}(t), \\ & \overset{23}{}_{3}(t) = -(1/2) \, \omega_{23}^{x}(t), \\ & \overset{22}{}_{4}(t) = (1/2) \, \omega_{23}^{y}(t). \end{aligned}$$

1.89)

В формулах (11.88), (11.89) применено следующее уточнение символов $\omega_{mn}(t)$ уравнения (11.45): величины ω_{mn}^{Q} , ω_{mn}^{z} , ω_{mn}^{x} , ω_{mn}^{y} относятся к базисным операторам $Q_{mn}(T)$, $Z_{mn}(T)$, $X_{mn}(T)$ и $Y_{mn}(T)$ соответственно. Зависимость компонент $\varrho_q^{(l)}(t)$ от $\varrho_{mn}(t)$ такая же, как и зависи-MOCTE $\omega_a^{(l)}(t)$ of $\omega_{mn}(t)$.

Подведем итоги. В случае чистого магнитного резонанса и в случае чистого квадрупольного резонанса статическому гамильтониану Нт можно дать простую геометрическую интерпретацию. Это позволяет перевести абстрактную динамику непосредственно на язык неприводимых тензоров (11.86), (11.87), приспособленных к Н_т.

Форма динамики (11.86), (11.87) верна и тогда, когда постоянные магнитное и электрическое поля присутствуют одновременно, но только

Во направлено по одной оси тензора Uo. В противном случае получается более абстрактная форма динамики (11.72), (11.73), интерпретация которой желательна в смысле п. 11.3.

ЛИТЕРАТУРА

Синивеэ В., Изв. АН ЭССР, Физ. Матем., 28, № 3, 194—201! (1979).
 Синивеэ В., Изв. АН ЭССР, Физ. Матем., 28, № 2, 115—123 (1979).
 Fano, U., Racah, G., Irreducible tensorial sets, Academic Press, New York, 1959.
 Гельфанд И. М., Минлос Р. А., Шапиро З. Я., Представления группы вращения и группы Лоренца, их применения, М., Физматгиз, 1958.

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 21/VI (1979

V. SINIVEE

RÜHMADE TEOORIA RAKENDAMISEST MITMESPINNISÜSTEEMIDE DÜNAAMIKA UURIMISEKS. VIII

On uuritud rühma SO(3) kasutamist 1-spinnise tuuma dünaamika interpreteerimisel.

V. SINIVEE

GROUP APPROACH IN DYNAMICS OF MANY-SPIN SYSTEMS. VIII

In certain cases the relationship between the dynamics of an abstract three-level quantum system and the dynamics of a nuclear spin 1 can be described in terms of orthogonal representations of Lie groups SO(3) and SU(2). So, to each dynamical solution of the abstract dynamics corresponds a dynamical solution in the field of pure quadrupolar resonance, provided magnetic as well as electric quadrupolar interactions with arbitrary time-dependence can be used to excite spin motions. Pure nuclear magnetic resonance is described in a similar manner. In both cases the whole set of possible time-independent Hamiltonians can be derived from a standard commuting set making use of representations of SO(3). If certain representations of SU(2) are included, possible Hamiltonians consist of both magnetic and quadrupolar interactions. The condition is that the direction of the magnetic field is that of an axis of the electric field tensor. If not, orthogonal representations of SU(3) must be used in order to transform from abstract to spin dynamics. transform from abstract to spin dynamics.