EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 26. KÖIDE FÜÜSIKA * MATEMAATIKA. 1977, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 26 ФИЗИКА * МАТЕМАТИКА. 1977, № 4

https://doi.org/10.3176/phys.math.1977.4.17

УДК 539.143.4

Э. РЕАЛО, С. РЕЙМАН, Р. КОХ

МАГНИТНЫЙ МОМЕНТ УРОВНЯ I = +3/2 ЯДРА ¹¹⁹Sn

E. REALO, S. REIMAN, R. KOCH. ¹¹⁹Sn TUUMA I = + 3/2-SEISUNDI MAGNETMOMENT E. REALO, S. REIMAN, R. KOCH. MAGNETIC MOMENT OF THE I = + 3/2 LEVEL OF ¹¹⁹Sn NUCLEUS

Магнитный момент μ_{ex} возбужденного состояния I = +3/2(23,875 кэВ) ядра ¹¹⁹Sn определялся неоднократно. Полученные из анализа магнитной сверхтонкой структуры мёссбауэровских спектров (MC) ¹¹⁹Sn значения μ_{ex} варьируют в широких пределах: от +0,67 до +0,83 я.м. [¹]. Разброс значений, вычисленных в [^{2,3}], существенно меньше, однако величины + (0,6760±0,0006) я.м. [²] и + (0,675±0,002) я.м. [³], определенные из хорошо разрешенных MC (магнитное поле на ядрах ¹¹⁹Sn $H_n^{Sn} \approx 200$ кэ) соединений редкоземельных и иттриевых гранатов с примесью олова, не согласуются в пределах ошибок с данными + (0,688±0,003) я.м. [⁴] и + (0,682±0,004) я.м. [⁵]. Последние получены в результате тщательной обработки разрешенных несколько хуже MC ферромагнитных соединений олова Co₂MnSn и Fe₃Sn ($H_n^{Sn} \approx 100$ кэ).

Целью настоящей работы было повторное определение μ_{ex} по измеренным в идентичных экспериментальных условиях МС двух соединений с различными величинами H_n^{sn} на ядрах примесных ионов олова,

чтобы выяснить, какому значению µex отдать предпочтение.

Удачными объектами для таких экспериментов являются окислы железа с примесью олова, у которых на ядрах ионов (119Sn)4+ индуцируются поля величинами около 120 кэ в α-Fe₂O₃-Sn и около 205 кэ в Fe₃O₄-Sn при 300 К. Методика приготовления и некоторые результаты исследования объектов a-Fe₂O₃-Sn (0,5 и 1,0 ат.%) и Fe₃O₄-Sn (1 ат. %) опубликованы ранее [6,7]. МС поглотителей (толщина 0,5-1,0 мг ¹¹⁹Sn/cm²) снимались на спектрометре постоянного ускорения (у-источник $Ba^{119m}SnO_3$ при (295 ± 2) K). Симметричная модуляция допплеровских скоростей с последующим поканальным складыванием двух «зеркальных» МС исключает возможность геометрических искажений спектра и улучшает линейность шкалы скоростей. Последняя проверялась с помощью интерференционного измерителя скорости на лазере ЛГ-55 [⁶], а также путем тщательного измерения и обработки калибровочных MC стандартных поглотителей α-Fe₂O₃ и Fe (источник ⁵⁷Co(Cr)). Отклонения от линейности не превышали в среднем ±0,02 мм/сек в пределах ±15 мм/сек.

Измерялись и обрабатывались 7 МС α -Fe₂O₃-Sn и 3 МС Fe₃O₄-Sn при (295 \pm 2) К. На рисунке, где приведен один из МС ¹¹⁹Sn объекта Fe₃O₄-Sn при 295 К, хорошо виден разрешенный (ширина линий

Lühiuurimusi * Краткие сообщения

~1 мм/сек) секстет магнитного расщепления ядерных уровней ¹¹⁹Sn. Слабые линии в области от 0 до 3 мм/сек принадлежат вероятнее всего примесям SnO и SnO₂ в образцах. Положения v_i отдельных компонентов MC вычисляли методом наименьших квадратов, предполагая MC состоящим из независимых линий лоренцевой формы. Так как поглотитель Fe₃O₄-Sn, в принципе, может быть использован для калибровки шкалы скорости спектрометра, мы приводим в таблице средние значения положений линий v_i (i = 1, ..., 6), изомерного сдвига δ (BaSnO₃), квадрупольного расщепления ΔE_Q и эффективного магнитного поля H_{sn}^{Sn} .

Положения	* линий	$v_i \pm 4$	0,02,	мм]сек	δ ,	ΔЕ _Q ,	Н ^{Sn} , **
<i>i</i> = 1 2	З		5	6	мм/сек	мм]сек	кэ
—13,98; —10,5	23; —6,49;	6,94;	10,68;	14,41	$+0,22\pm0,02$	0,01±0,04	-(205±1)

* Введена поправка на геометрию эксперимента.

** Знак поля определялся по измерениям МС во внешнем магнитном поле.

Из положений линий МС v_i вычислялось отношение ядерных g-факторов возбужденного и основного состояний ¹¹⁹Sn по формуле [⁴]:

 $\frac{g_{ex}}{g_0} = \frac{3(v_1 - v_3 + v_4 - v_6)}{v_1 + 4v_2 + 7v_3 - 7v_4 - 4v_5 - v_6}$

Считаем, что все vi определены с равной точностью.

Магнитный момент возбужденного I = +3/2 состояния ¹¹⁹Sn μ_{ex} вычисляли по $\mu_{ex} = 3\mu_0 \frac{g_{ex}}{g_0}$, принимая наиболее точное значение $\mu_0 = -(1,04621 \pm 0,00006)$ я.м., определенное И. Линдгреном методом ЯМР [⁸].

Полученные нами усредненные значения g_{ex}/g_0 составляют — (0,2178 ± 0,0015) для Fe₃O₄-Sn и — (0,217 ± 0,002) для α -Fe₂O₃-Sn, а μ_{ex} , соответственно, + (0,684 ± 0,004) и + (0,680 ± 0,006) я. м. Среднее значение $\mu_{ex} = +$ (0,682 ± 0,003) я. м. свидетельствует в пользу

467

величин +0,682 я. м. [⁵] и +0,688 я. м. [⁴], но оно получено на соединениях совершенно другого типа.

Сделаем несколько замечаний относительно применимости указанных поглотителей в качестве стандартов при калибровке скоростей без обычных комбинаций источника 57Со и железосодержащих поглотителей:

а) Из-за нестабильности характеристик α-Fe₂O₃-Sn не может быть использован для калибровки. В течение 1-2 месяцев хранения поглотителей при 300 К их МС теряют магнитную структуру и становятся похожими на MC соединения SnO₂. Ионы Sn⁴⁺ покидают свои места в решетке и не участвуют в магнитном взаимодействии.

б) Поглотитель Fe₃O₄-119Sn может быть использован для калибровки скоростей в диапазоне от 0 до ±15 мм/сек. По крайней мере в течение 3 месяцев мы не наблюдали заметных изменений параметров МС. Контрольный опыт показал, что при такой калибровке определенные из МС металлического железа g-факторы ⁵⁷Fe составляют $g_0 = (3.92 \pm 0.01)$ MM/cek и $g_{ex} = (2,24 \pm 0,01)$ MM/cek, что хорошо согласуется с аналогичными данными других авторов (см., напр., [1]).

Длительная стабильность и зависимость мёссбауэровских параметров от технологии приготовления образцов требуют дальнейших исследований.

Выводы: 1. Получено значение $\mu_{ex} = + (0,682 \pm 0,003)$ я.м. для магнитного момента уровня I = +3/2 (23,875 кэВ) ядра ¹¹⁹Sn.

2. Показана ограниченная применимость поглотителя Fe₃O₄-Sn как стандарта для калибровки шкалы скоростей мёссбауэровского спектрометра.

ЛИТЕРАТУРА

- 1. Greenwood, N. N., Gibb, T. C., Mössbauer Spectroscopy, London, 1971.
- 2. Bauminger, E. R., Hess, J., Nowik, I., Ofer, S., Solid State Communs, 10, 365 (1972).
- 3. Novik, I., Bauminger, E. R., Hess, J., Mustachi, A., Ofer, S., Phys. Lett., 34A, 155 (1971).
- Both, E., Trumpy, G., Djega-Mariadassou, C., Phys. Lett., 35A, 27 (1971).
 Brooks, J. S., Williams, J. M., Webster, P. J., J. Phys. D: Appl. Phys., 6, 1403 (1973).
- Реало Э., Лийн А., Изв. АН ЭССР, Физ. Матем., 23, 166 (1974).
 Реало Э., Рейман С., Ргос. 6th Intern. Conf. on Mössbauer Spectroscopy, Cracow, 1975, Р. I, 4В-7.
 Lindgren, I., Ark. Fys., 29, 553 (1965).

НИИ ядерной физики МГУ

Поступила в редакцию 20/I 1977

Институт физики Академии наук Эстонской ССР