EESTI NSV TEADUSTE AKADEEMIA TÕIMETISED. 25. KÕIDE FÜÜSIKA * MATEMAATIKA. 1976, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 25 ФИЗИКА * МАТЕМАТИКА. 1976, № 4

https://doi.org/10.3176/phys.math.1976.4.09

Майре ОЯВЭЭР, В. САРВ

УДК 621.314.2.072.001.5

ПРОЦЕССЫ ПРЕОБРАЗОВАНИЯ В ТИРИСТОРНОМ РЕГУЛЯТОРЕ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ С ПОДАВЛЕННЫМИ ЧЕТНЫМИ ГАРМОНИКАМИ ТОКА

Тиристорным преобразователям параметров электроэнергии, занявшим ведущее место в преобразовательной технике благодаря компактности, экономичности, гибкости управления и относительной надежности, присущ и ощутимый недостаток — генерирование нежелательных частот, искажающих входной ток и выходное напряжение [¹⁻⁴].

В регуляторах переменного напряжения полезна, как правило, основная гармоника выходного напряжения [⁵]. Для обеспечения возможности улучшить коэффициент мощности с помощью компенсирующих конденсаторов желательна форма входного тока также близкая к синусоидальной [²].

Благодаря простоте наибольшее распространение в таких регуляторах нашли схемы со встречно-параллельными тиристорными парами.

Соответствующая однофазная схема при активной нагрузке изображена на рис. 1, а. Для нее характерно, однако, быстрое уменьшение коэффициента искажения в ходе регулирования

$$k_{\rm H} = U_{R(1)} / U_R = I_{1(1)} / I_1, \tag{1}$$

а следовательно, и падение к. п. д. выделения первой гармоники [6, 7]

$$\eta_1 = P_{R(1)} / P_R = k_{\rm H}^2. \tag{2}$$

Здесь U_R , I_1 — действующие значения напряжения и тока нагрузки, $U_{R(1)}$, $I_{1(1)}$ — действующие значения первой гармоники напряжения и тока нагрузки, $P_{R(1)}$ — средняя (т. е. активная) мощность первой гар-

моники в нагрузке, $P_R = \sum_{n=1}^{\infty} P_{R(n)}$ — суммарная средняя мощность в нагрузке.

Для стабилизации высокого значения коэффициента искажения в широком диапазоне регулирования в последнее время предложен ряд усовершенствованных схем с использованием различных входных фильтров [¹⁻⁴]. Но все они имеют общий недостаток — падение напряжения первой гармоники на дросселе фильтра.

В настоящей статье рассматривается возможность улучшения спектрального состава тока и напряжения тиристорного регулятора способом, основанным на подавлении четных гармоник в токе тиристора. Технически это реализуется включением в контур тиристорной пары линейного дросселя со средней точкой [^{8, 9}].

Схеме на рис. 1,а эквивалентна в смысле преобразовательных процессов в тиристоре схема на рис. 1,б с полосовыми фильтрами $F_{(0)}$, $F_{(1)}$, $F_{(2m)}$ и $F_{(2m+1)}$, где m = 1, 2..., а индекс соответствует пропускаемым гармоникам тока. Как видно, ток тиристора

$$i_{T1}(t) = i_{T2}(t - T/2) = i_{T1(0)} + i_{T1(2m)} - i_{T1(1)} + i_{T1(2m+1)}$$
(3)

в общем случае может содержать все гармоники, хотя ток нагрузки

$$i_1 = 2(i_{T_1(1)} + i_{T_1(2m+1)}) = 2i_{T_1(2m-1)}$$
(4)

имеет только нечетные гармоники.

В распространенных схемах с различными входными фильтрами [²⁻⁴] улучшение спектрального состава тока регулятора достигалось за счет подавления нечетных высших гармоник в токе нагрузки. Сходство электромагнитных процессов в различных типах ключевых регуляторов позволяет предполагать, что принципы, способствующие повышению эффективности работы одних видов, могут быть использованы и в случае других. В ключевых преобразователях высшие гармоники генерируются в ключе. Анализ процессов в магнитном ключе [¹⁰] показал, что при подавлении в токе одних гармоник изменяется величина и соотношение других. Так, подавление четных гармоник оказывает такое влияние на соотношение нечетных, что переменная составляющая тока магнитного ключа приближается к прямоугольной форме (классический пример — дроссели насыщения с подавленными четными гармониками [¹¹]). Следовательно, и в токе тиристора следует ожидать аналогичной картины.

Рис. 2.

Подавление четных гармоник в токе тиристора легко осуществить по схеме на рис. 2, а [⁹], использованной также в качестве подсхемы в [⁸]. С точки зрения преобразовательных процессов в тиристоре ей эк-

5 ENSV TA Toimetised F * M-4 1976

вивалентна схема с полосовыми фильтрами на рис. 2,б. Проанализируем работу схемы на рис. 2,а в предположении, что 1) тиристоры являются идеальными ключами. 2) четные гармоники полностью подавлены, т. е. $L_1 = L_2 = L = \infty, 3)$ KOэффициент связи k = $= M \chi L_1 L_2$ между индуктивностями L₁ и L₂ равен единице и, следовательно, на индуктивности отсутствует падение напряжения первой гармоники.

На рис. З приведены временные диаграммы токов и напряжений этой схемы. Здесь а — угол отпирания тиристора; и1 — напряжение питания; и_R, i_R — напряжение и ток нагрузки; и12напряжение между точ-ками 1 и 2; u_{T1} , i_{T1} — напряжение и ток тиристора T₁ (и_{т2}, *i*_{T2} — напряжение и ток тиристора T_2 ; u_{L1} — напряжение линейной индуктивности L_1 .

Сравнивая формы тока нагрузки в исследуемой схеме и в дросселе насыщения с активной нагрузкой и подавленными четными гармониками тока, видим, что они вполне совпадают. Первый и второй режимы работы дросселя насыщения ([¹¹], гл. 8) соответствуют промежутку $0 \le \alpha \le \pi/2$ (рис. 3). В схеме на рис. 2,*а* первому режиму соответствует интервал arctg $2/\pi \le \alpha \le \pi/2$, второму — $0 \le \alpha \le$ $\le \operatorname{arctg} 2/\pi$ (arctg $2/\pi = 32^{\circ}29'$). В первом режиме ток нагрузки имеет прямоугольную форму. Процессы преобразования в течение $-\pi/2 \le$ $\le \alpha \le 0$ (соответствует третьему режиму) будут проанализированы в дальнейших публикациях. При $\alpha = -\pi/2$ ток нагрузки достигает синусоидальной формы.

В настоящей статье рассматривается изменение угла отпирания тиристора в границах $0 \le \alpha \le \pi/2$, что отвечает основному диапазону регулирования.

Приведенная на рис. 2,а схема работает следующим образом (рис. 3). В течение $a \leq \omega t \leq \beta$ оба тиристора T_1 и T_2 отперты, $u_{12} = u_1 - u_R = 0$, а также и $u_{L1} = u_{L2} = 0$; токи тиристоров $i_{T4} = i_{T4(0)} + i_{T4}(\sim)$, $i_{T2} = i_{T2(0)} + i_{T2}(\sim)$, где $i_{T4(0)} = i_{T2(0)} = |i_R|_{\max}/2$ постоянные и $i_{T4(\sim)} = i_R/2$, $i_{T2(\sim)} = -i_R/2$ — переменные составляющие токов тиристоров; ток нагрузки $i_R = i_{T1} - i_{T2}$.

В течение $\beta \leq \omega t \leq \pi + \alpha$ отперт только тиристор T_1 , т. е. $u_{12} =$

Процессы преобразования в тиристорном регуляторе...

Рис. 4.

Рис. 5.

395

 $= u_{L1} = -(u_{T2} + u_{L2}), i_R = i_{T1}.$ Во время $\pi + a \le \omega t \le \pi + \beta$ оба тиристора вновь отперты. В течение $\pi + \beta \le \omega t \le 2\pi + a$ отперт только тиристор T_2 , т. е. $u_{12} = -u_{L2} = u_{T1} + u_{L1}, i_R = -i_{T2}.$

В данной схеме благоприятную форму входного тока обеспечивают линейный дроссель, работающий в качестве периодического накопителя и генератора энергии, и своеобразный обмен энергии между источником питания, индуктивным накопителем и нагрузкой. Все это наглядно иллюстрирует рис. 4. Здесь p_1 , p_R , p_{L1} , p_{L2} — мгновенные мощности источника питания, нагрузки и полуобмоток линейного дросселя.

В течение $\alpha \leq \omega t \leq \beta$ нагрузка потребляет всю энергию источника питания. Оба тиристора отперты, напряжение $u_{L1} = u_{L2} = 0$, т. е. линейный дроссель не участвует в обмене энергии.

В течение $\beta \le \omega t \le \pi - \beta$ нагрузка использует не всю энергию источника питания. Ее остаток накапливается в магнитном поле полуобмотки L_1 линейного дросселя.

В течение $\pi - \beta \leq \omega t \leq \pi$ для нагрузки необходимо больше энергии, чем может отдать источник питания. Ее недостаток восполняет энергия, накопленная в магнитном поле L_1 за предыдущий промежуток.

В течение $\pi \leq \omega t \leq \pi + \alpha$ нагрузка питается только энергией L_1 . Так как в полуобмотке L_1 дросселя накапливается больше энергии, чем потребляется нагрузкой, ее остаток возвращается в источник питания. В течение $\pi + \beta \leq \omega t \leq 2\pi + \alpha$ в обмене энергии участвует и полуобмотка L_2 .

На рис. 5 приведены качественные характеристики анализируемой схемы. Здесь k_{μ} , χ_1 и соз φ_1 — коэффициенты искажения, мощности и сдвига, а η_1 — к. п. д. выделения первой гармоники [⁶] (те же обозначения со знаком «'» соответствуют схеме на рис. 1,*a*). Этот рисунок наглядно показывает преимущества исследуемой схемы. Хотя с увеличением угла отпирания тиристора α коэффициент мощности χ_1 уменьшается в обоих случаях, в схеме на рис. 2,*a* это не сопровождается уменьшением коэффициента искажения, что облегчает компенсацию реактивной мощности. Из рис. 5 видно также, что в рассматриваемом промежутке изменения угла отпирания тиристора ($0 \leq \alpha \leq \pi/2$) макси-

Майре Оявээр, В. Сарв

Рис. 6.

мальное значение относительного выходного напряжения $U_{R(1)}/U_1 = 0,894$.

Изменение отношения U_{R(1)}/U₁ в зависимости от угла отпирания тиристора демонстрирует рис. 6 (а — соответствует схеме без дросселя, т. е. рис. 1,а, и б схеме с дросселем, т. е. рис. 2,а). Видно, что значение $U_{R(1)}/U_1 = 1$ достигается по первой схеме при $\alpha = 0$, а по второй при $\alpha = -\pi/2$.

Отметим также, что тиристор работает в обенх схемах и в качестве преобразователя частоты, потребляющего энергию на частоте питания и генерирую-

щего ее на частотах высших гармоник.

Предложенный способ улучшения спектрального состава тока тиристорного регулятора переменного напряжения путем подавления четных гармоник в токе тиристора весьма перспективен. Его отличают простота, достаточная жесткость внешних характеристик и сохранение благоприятной формы входного тока во всем диапазоне регулирования. На следующих этапах исследования необходимо в первую очередь определить влияние конечного значения заграждающей индуктивности и различных видов нагрузки на спектральный состав тока.

ЛИТЕРАТУРА

- Логиненко В. А., В сб.: Повышение эффективности устройств преобразова-тельной техники, ч. 2, Киев, 1972, с. 293.
 Чиженко И. М., Выдолоб Н. Ф., Собчук А. С., В сб.: Повышение каче-
- Чиженко И. М., Выдолоо Н. Ф., Соочук А. С., В со.: Повышение качества электрической энергии в распределительных сетях, Киев, 1974, с. 129.
 D'ewan S. B., Segsworth R. S., Biringer P. P., IEEE Trans. Industry and General Applications, IGA-6, No. 4, 378 (1970).
 El-Bedweihi E., Biringer P. P., IEEE Trans. Industry Applications, IA-10, No. 4, 501 (1974).
 Липковский К. А., В сб.: Проблемы технической электродинамики, вып. 45, Киев. 1974.
- Киев, 1974, с. 187.
- Киев, 1974, с. 107.
 Оявээр М. Р., В сб.: Аналоговые магнитные элементы и электромагнитные устройства, М., 1968, с. 250.
 Тонкаль В. Е., Липковский К. А., Мельничук Л. П., Способы улучшения качества выходного напряжения автономных инверторов, Киев, препринт-49 ИЭД АН УССР, 1972.
 Lepp V. R., Sibgatulin K. M., Cherkasov J. N., Current Stabilizer Having a Saturable Pagator in the Mode of Forced Magnetization United States Dataset.
- a Saturable Reactor in the Mode of Forced Magnetization, United States Patent
- No. 3 845 380, Oct. 29, 1974.
 9. Emanuel-Eigeles A., Erlicki M. S., IEEE Trans. Industry and General Applications, IGA-4, No. 4, 447 (1968).
 10. Сарв В., Оявээр М., Саккос Т., Хунт Ю., Магнитые преобразователи
- электроэнергии с удвоением частоты, Таллин, 1972. 11. Сторм Г. Ф., Магнитные усилители, М., 1957.

Институт термофизики и электрофизики Академии наук Эстонской ССР Поступила в редакцию 8/XII 1975

Maire OJAVEER, V. SARV

MUUNDUSPROTSESSID TÕKESTATUD PAARISHARMOONILISTEGA VAHELDUVPINGE-TÜRISTORREGULAATORIS

Paarisharmooniliste tõkestamiseks türistori voolus on regulaatori türistorkontuuri lülitatud lineaarne drossel, mis kujutab endast perioodilist energiasalvestit. See parandab oluliselt aktiivkoormusrežiimil töötava vahelduvpinge-türistorregulaatori voolu spektraalkoostist kogu reguleerimispiirkonnas.

Maire OJAVEER, V. SARV

CONVERSION PROCESSES IN THE ALTERNATING VOLTAGE THYRISTOR REGULATOR WITH SUPPRESSED EVEN HARMONICS

Suppression of even harmonics in thyristor current is achieved by connection of linear inductance coil with a midpoint terminal (operating as a periodic energy storage device) in series with thyristors of the regulator. As a result, a considerable improvement in the harmonic content of current of the resistively loaded alternating voltage thyristor regulator is obtained in the whole control range.